GOODS MOVEMENT: REGIONAL ANALYSIS AND DATABASE

FINAL REPORT

DISCLAIMER

The contents of this report reflect the views of the authors, who are exculsively responsible for the facts and accuracy of the information provided herein. This document is disseminated under the sponsorship of the Department of Transportation University Centers Program, in the interest of information exchange. Netiher the US. Government nor the local sponsors assume liability for the content and use thereof.

REGIONAL ANALYSIS AND DATABASE

Draft Final Report

Mark Turnquist
Arnim Meyburg
Cornell University

George List
Rensselaer Polytechnic Institute

University Transportation Research Centers Program

Region II

March 26, 1993

Rensselaer

Cornell University

ACKNOWLEDGEMENT AND DISCLAIMER

The authors gratefully acknowledge the partial sponsorship of this work by the United States Department of Transportation and the New York State Department of Transportation.

They would also like to acknowledge the assistance of the many graduate and undergraduate students who participated in the effort. They include Jean-Daniel Saphores, Siew Leong, Huatien Wang, Andrew Wolfe, Craig Blake, Chris McKay, Jason DeSeve, and Jennifer Conley.

This document is disseminated under the sponsorship of the Department of Transportation University Transportation Centers Grant Program in the interest of information exchange.

The material presented reflects the position of the authors and not necessarily that of either the State of New York or the United States Government. The report does not constitute a standard, specification, or regulation. Neither the United States Government nor the State of New York assumes any liability for the contents or use thereof.
Chapter and Section Page

1. Introduction 1
1.1 Background and Motivation 1
1.2 Objective and Scope 4
1.3 Document Overview 4
2. Methodology 6
2.1 Functional Requirements 6
2.2 Basic Assumptions 7
2.3 Representing the Observed Data 11
2.4 Model Description 16
2.5 Illustrative Realizations of Equation (8) 18
2.6 Relationship to Previous Modeling Efforts 21
2.7 Model Implementation 23
2.8 Summary 28
3. Bronx Case Study 32
3.1 The Case Study Setting 32
3.2 Purpose and Scope of the Study 34
3.3 Zone and Network Definition 35
3.4 Data Sources 38
3.5 Creating the Model Constraints 55
3.6 Results of the Analysis 69
3.7 Conclusions 83
4. Brooklyn Case Study 85
4.1 Purpose and Scope 85
4.2 Problem Setting 88
4.3 Creating the Constraints 101
4.4 Findings 113
4.5 Insights 121
5. Summary and Conchusions 123
5.1 Introduction 123
5.2 The Methodology 124
5.3 Bronx Case Study 125 125
5.4 Brooklyn Case Study 129
Appendix A: Dataset Listings for the Bronx Case StudyAppendix B: Dataset Listings for the Brooklyn Case Study

CHAPTER 1

INTRODUCTION

Transportation planners are becoming increasingly interested in freight movements. This interest, however, highlights the inadequacy of existing data on freight movements, especially in urban areas. Ogden [1992], for example, in his recent book on urban goods movement, has noted that most urban areas in the U.S., Canada, Britain and Australia have not collected comprehensive data on freight movements since the 1970's. The more recent data are mostly fragments - small sets of partial data on movements in specific areas, across particular bridges or highway sections, etc.

Against this backdrop, the project reported here has been undertaken to create and test methods for synthesizing truck flow patterns from partial and fragmentary observations. To accomplish this goal, the project has focused on assembling all available data on truck flows in a particular urban area (New York City), developing a useable database from these separate data sets, and using the database to support a modeling effort aimed at estimating both origin-destination patterns and link flows.

1.1 Background and Motivation

Increased levels of congestion seem to be problematic nationwide. Gone is the option of building highway capacity fast enough to keep pace with the growth in demand. In addition, what capacity we do have is in need of repair, much of it having been built in the 1960 's and 1970 's. Network rehabilitation is a key focal point of current planning efforts.

This means that planners need to focus on how to get greater capacity from existing facilities. They must also determine how to make minor improvements and investments that make it possible for the network to function more efficiently and effectively. Historically, such efforts focused on improving auto flow, reducing auto-minutes of delay, and increasing personal mobility. But a shift in focus is underway, not only away from autos toward high occupancy vehicles, but also from passenger travel toward goods movement. Planners are beginning to emphasize the fact that an area's economy can prosper only if jobs are plentiful, and jobs can exist only if raw materials, semi-finished goods and finished products can get to and from manufacturing plants, retail and wholesale facilities, and service facilities.

Air quality is another issue driving the focus on goods movement. There is an interest in reducing the freight-related emissions, particularly nitrous oxides $\left(\mathrm{NO}_{\mathbf{x}}\right)$ and particulates $\left(\mathrm{PM}_{10}\right)$ from diesel trucks. Lower travel times, achieved through higher average speeds and less delay, translate into smaller quantities of fuel consumed and lower emissions, even without changing the distribution of trips among truck classes, or among modes.

This emphasis on goods movement is needed, and it should produce the benefits expected - a more stable employment base and sustained economic vitality - because businesses can grow and prosper if they can ship to and from the businesses with which they interact. To achieve these benefits, however, we must know more about the flow patterns of goods in most urban areas. Planners do not have much data on how many trucks are traveling from one place to another, or what the distribution of truck sizes is among these flows. There are also questions about the extent to which commercial vans are used, how the flow pattems vary by time of day, and what facility improvements, or changes in
operating practices, would facilitate these movements. Moreover, can changes in these flow patterns relieve congestion in general? Could auto flow be improved as well?

To answer these questions, a sense of the flow patterns is needed. It is necessary to develop OD matrices, by truck class and time period, so that diversion studies can be performed, and so that the impacts of changes to the network's characteristics can be assessed. For example, if commercial vans are allowed to use auto-only parkways, during off-peak hours, what would be the impact? How would trips be diverted? If a major expressway is taken out of service, in whole or in part, for reconstruction and rehabilitation, what changes in truck flow patterns will result? Will certain businesses be forced to close? Will their transport costs increase dramatically? How will the overall network flow patterns be affected? Questions like these can only be answered if flow matrices are available.

Moreover, if one is to develop such matrices, from data currently available, how can the quality of the flow estimates be improved? Where should data be collected next? What types of data would be most helpful? Link classification counts? A partial OD survey? Answering these questions is a complex problem. It takes carefully designed methods and analysis tools to sift through the existing data and determine what additional data would have the greatest value.

Other problems complicate the situation. Often, the data are collected and kept by different agencies, the sampling bases are different (e.g., include/exclude vans, westbound flows only, tolled facilities only), different definitions are used for the items being collected (e.g., heavy truck, medium truck), and different time frames (e.g., different years, seasons, starting and ending times during the day). This suggests a need for an analysis tool that is tolerant of differences in the input data and robust in its estimation of flows.

12 Objective and Scope

In response to this need for better truck flow analysis tools, the purpose of this research project is to develop a way to estimate OD trip matrices from data typically available: link volumes, classification counts, cordon counts of trucks entering and/or exiting the study area, and partial observations of the OD flows themselves.

This method should:
o make maximum possible use of existing information;
o work with many different types of data and combinations of data;
o deal effectively and efficiently with new types of data, and new forms of information;
o generate multi-truck class OD flow matrices;
o deal with multi-time period problems; and
0 accommodate network use restrictions (e.g, no trucks or no heavy trucks) and changes in those restrictions.

The product of this project is a new battery of software that helps transportation planners estimate multi-class truck trip matrices for a given network and time period. These matrices and the associated link flows can be displayed using a Geographic Information System (GIS) platform. This contributes to rapid understanding of the results from a large, complex model.

1.3 Document Overview

Beyond this introduction, Chapter 2 presents the methodology that has been developed. Chapters 3 and 4 present case study analyses from two areas in New York City; Chapter 3 focuses on the Bronx, and Chapter 4 on Brooklyn. Chapter 5 presents a summary
of the findings, and conclusions and recommendations. Appendices A and B contain listings of the input data sets created for the two case study analyses.

CHAPTER 2

METHODOLOGY

This chapter describes the process by which the multiclass truck origin-to-destination (OD) trip matrices are generated. First the basic functional requirements are described, followed by the underlying assumptions upon which the process is based. The discussion then turns to the models, imbedded within the process, that actually estimate the $O D$ matrices.

2.1 Functional Requirements

The method for estimating truck flows must address two major objectives. The first is to generate the best possible multiclass truck OD matrices (and associated link flows) based on whatever flow information is available. The second is to provide indications of where holes exist in the data, so that subsequent data collection efforts focus on critical data needs. As Figure 2.1 shows, application of this methodology yields an iterative process where better and better OD matrices are generated from ever improving information acquired through targeted, efficient and prioritized data collection.

Put another way, the method is aimed at synthesizing multiclass truck trip tables from data typically collected during corridor studies: link counts, classification counts, and partial OD surveys. Moreover, it is to provide feedback about weak spots in these data, so that future data collection efforts can focus on the most critical needs.

Figure 2.1 The OD matrix refinement process.

Recognizing that the inputs employed are typically collected by different agencies and/or consultants, for different purposes, at various locations, and at varying times, the method must be designed to tolerate inconsistencies in truck class definitions, zone definitions, hours of observation, and geographic extent. Moreover, it should also accommodate variations in origin and destination specificity, data collection location identification, and truck class coding.

2.2 Basic Assumptions

To meet the functional requirements listed above, we have developed a solution process based on as few assumptions as possible. However, some basic assumptions are necessary. First, the network is assumed to consist of links, joined at nodes, and each link is assumed to have at least the following attributes: 1) a directional flag (only forward, only
backward, or two-way), 2) a use label (all truck classes, some, or none), and 3) a travel time (which may vary by time of day).

Further, it is assumed that the underlying geography is divided into an exhaustive, non-overlapping set of zones. Zipcodes are a suitable example; census tracts are another. Each zone has a centroid, designating the point at which trips originate and terminate. If the centroid is on the network, it must be a network node. If off, it must be attached to one or more network nodes by centroid connectors.

It is assumed that a set of truck classes exists such that one can distinguish among the types of trucks generating trips. The FHWA truck classes ("F" classes) are a suitable example. This specific truck classification scheme is discussed more thoroughly in Chapter 3. The case studies in Chapters 3 and 4 differentiate among commercial vans, two-axle trucks with six tires, three-axle trucks, and trucks with four-or-more axles. It is assumed that OD matrices are to be developed for each truck class for each time period.

Also postulated are link impedances and use restrictions that relate to these truck classes. For example, each link indicates whether or not a particular class of truck is permitted to use it. The truck classes chosen must be compatible with these restrictions. For example, if certain links prohibit tractor-trailers, at least two classes are required so that separate link utilization coefficients can be developed for the tractor-trailer flows.

Finally, it is assumed that a routing algorithm is available. The routing algorithm is used to specify link utilization coefficients for each OD pair - i.e., the proportion of that OD pair volume which will appear on a given link. For example, in the case of the network shown in Figure 2.2, if O and D were the origin and destination of interest, a routing algorithm might predict that 50% of the traffic will travel from O to D via path ORD, 30% will travel via path OSD, and the remaining 20% will travel via path ORSD.

Figure 2.2 Example network.

From these path proportions, one can develop link utilization coefficients for the ten directed links in the network, as follows:

Link	Utilization Coefficient	Link	Otilization
Coefficient			

The link utilization coefficients are computed by summing the proportions for all paths which use that particular link. Thus, the utilization coefficient of 0.7 for the link from O to R includes the proportions of total traffic on paths ORD and ORSD. Note also that many links have utilization coefficients of 0.0 , implying that they are not used for travel from O to D .

For another origin-destination pair in this same network, say S to R, there will be a completely different set of link utilization coefficients for the ten links. The method for estimating origin-destination matrices developed in this project relies on our ability to
generate all of the link utilization coefficients, for every origin-destination pair on every link in the network. It further assumes that these coefficients are constants, not affected by the actual origin-destination volumes.

In general, these assumptions can be summarized via the following equations:

$$
\begin{equation*}
\sum_{p \in P_{\infty}} v_{p}=V_{o d} \quad \forall(o, d) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p \in P_{1}} v_{p} \approx V_{l} \quad \forall l \tag{2}
\end{equation*}
$$

where $\mathrm{V}_{o d}$ is the total estimated volume traveling from O to $\mathrm{D}, \mathrm{v}_{\mathrm{p}}$ is the volume using path $p, P_{o d}$ is the set of paths p that go from O to D, P_{l} is the set of paths p using link l, and V_{l} is the observed volume for link l. The approximation symbol indicates that this observed volume is to be matched as closely as possible by the sum of the path volumes $\mathbf{v}_{\mathbf{p}}$ estimated by the model. Although equations (1) and (2) are expressed in terms of path volumes, the link utilization coefficients can be determined without explicit path emumeration for each origin-destination pair. This is an important computational consideration.

It is important to note that changes in link travel times will affect the routes obtained, as will changes in link use restrictions. In fact, it is changes in these parameters that will ultimately cause diversion of trucks from one path to another, as traffic rerouting options are explored for freeway reconstruction projects, goods mobility enhancement initiatives, etc.

In the current implementation of the methodology, Dial's routing algorithm [Dial, 1971] is used to generate the link utilization coefficients. This algorithm is computationally
efficient, and typically selects multiple paths between any origin and destination, which is an advantage in this application. Other routing algorithms could be used, as long as a set of constant link utilization coefficients can be generated.

2.3 Representing the Observed Data

The basic assumptions are augmented by postulates concerning flow-related data. The observed data are grouped into three basic types of observations - LV, OD, and OT data - as described below.

Link Volume (LV) Data

LV data represent observations of link flows for the network. Often they are specific to direction, type of vehicle, and time of day. Classification counts are a good example, as are turning counts, and data from automatic counters, if they can classify vehicles (e.g. based on the number of axles).

The interchange between the Bruckner and Sheridan Expressways in the Bronx provides a good example of such data. As shown in Figure 2.3, the available information includes Annual Average Daily Traffic (AADT) volumes, average AM and PM peak hour volumes, and total daily truck volumes. Both the AADT counts and peak hour counts include all vehicles. For use in the process of estimating OD matrices by truck class for three different time periods (AM Peak, Midday, and PM Peak), these counts had to be transformed into estimates of link volumes by truck class and direction for all three time periods. (Chapter 3 describes this particular input data development effort in detail.)

Sometimes, different sets of LV data use different aggregations of the truck classes. In the Brooklyn case study, for example, three-axle trucks were classified as "heavy trucks"
in one data set, and grouped with two-axle, six-tire ("medium") trucks in another. Sometimes commercial vans are counted; sometimes they are not.

Figure 2.3 Bruckner/Sheridan Interchange.

To deal with these variations, constraints are needed that map the aggregations in the observed values into model variables. For example, suppose that on one link, j, a count is reported which includes both two-axle, six-tire trucks and three-axle trucks, while on another link, k, a different count reports three-axle trucks together with four-or-more axle trucks. Denote the two counts as C_{j} and $C_{\mathbf{k}}$ respectively, and let the model variables $V_{2 j}$ and $\mathrm{V}_{2 k}$ refer to link flows of two-axle, six-tire trucks; $\mathrm{V}_{3 \mathrm{j}}$ and $\mathrm{V}_{3 k}$ represent three-axle trucks; and V_{HJ} and V_{Hk} represent four-or-more axle trucks. Then the following contraints would pertain:

$$
\begin{align*}
& V_{2 j}+V_{3 j}=C_{j} \tag{3}\\
& V_{3 k}+V_{B k}=C_{k} \tag{4}
\end{align*}
$$

OD Data

OD data provide direct estimates of entries in the OD matrices. The available data typically provide selective information, based on interviews of vehicles crossing a given link, or through a network gateway. Inbound data collected at gateways generate rows ("from" entries) in the OD matrices; outbound data generate columns ("to" entries).

Here, there can be incompatibilities not only with truck class definitions or coverage, but also zone definitions. For example, the East River Crossing Survey, performed by the New York City Department of City Planning, collected data on trucks crossing the East River westbound (into Manhattan) and used a zone structure based on political boundaries (aggregations of City wards). A second survey, performed by the Gowanus Expressway TSM Study consultant, used zipcodes as zones. Both of these sources of data are useful in our

Brooklyn case study (Chapter 4), but to make use of these data, mapping functions are needed that link the network model zones with those used in each survey.

This is illustrated in Figure 2.4. Zone X , which represents a zone definition employed in some OD survey, lies within Zones A, B, and C . Hence a mapping is developed which says that trips which originate within Zone \mathbf{X} must originate (can be mapped into trips that originate) in network zones A, B, and C. If we are interested in trips destined to some zone, j, and have an observation (from the survey) on trips from X to j, denoted T_{Xj}, we can create a constraint as follows:

$$
\begin{equation*}
T_{A j}+T_{B j}+T_{C j} \geq T_{X j} \quad \forall j \tag{5}
\end{equation*}
$$

Figure 2.4 Zone mapping illustration.

Note that the constraint is written as an inequality because the aggregation of model zones A, B and C is larger than the survey zone X . Hence, the observation should be a lower bound on the total estimated trips from the three zones (A, B and C) to zone j.

OT Data

OT data are observations of flows originating or terminating at some specific location in the network. They represent row and column totals in the OD matrices. Screenline counts exemplify such data, particularly when the count is taken at a gateway node (e.g., at a bridge or toll plaza). Information about truck trips into or out of a given region or zone represent another good example. The Bronx Truck Route Study, for example (described in more detail in Chapter 3), provides estimates of truck trip generation rates per square mile for all of Bronx County.

As with the LV and OD data, truck class cluster conflicts can exist between the groupings used for data collection and those used by the model; and, again a mapping function is needed from the observation-related truck class clusters to the truck class variables being used in the model:

$$
\begin{equation*}
\sum_{k \in K_{x}} \sum_{d} v_{o a k} \geq V_{a x} \quad \forall o, x \tag{6}
\end{equation*}
$$

where $V_{0 X}$ is the observed volume in truck class cluster x originating at node (zone centriod or gateway node) $o, K_{\mathbf{z}}$ is the set of truck classes \mathbf{k} contained in the observation, and $\mathbf{v}_{\text {odk }}$ is the model variable for the number of trucks of type k going from origin o to destination d.

2.4 Model Description

The model for developing multiclass truck trip matrices treats the task as an optimization problem. The objective is to minimize a cost (or penalty) function representing the weighted sum of all deviations between the observed values and those predicted by the model. The cost function associated with each observed value is a two-sided piecewiselinear function, like that depicted in Figure 2.5.

Figure 2.5 The piecewise linear penalty function.

This type of piecewise-linear function has four major advantages. First, it allows the model to be much more sensitive to large errors than to small ones, in the same way that would be accomplished by minimizing a squared-error function. However, by using a piecewise-linear function, we can maintain the computational advantage of formulating the model as a linear programming problem. Third,by varying the weights associated with
different observations, we can reflect differing degrees of confidence in various observations. Finally, by varying the weights associated with positive or negative deviations from the observed (target) value, we can can create asymmetric error functions for specific observations and reflect the fact that it may be important for the model not to underestimate (or overestimate) certain values.

The minimization of total weighted deviations from the observations is subject to a series of constraints which are formed from the three types of observed data values discussed in the previous section. Hence, the model can be described as follows: Minimize:

$$
\begin{equation*}
\sum_{k} w_{k}^{d}\left(d_{k}^{-}+d_{k}^{+}\right)+w_{k}^{e}\left(e_{k}^{-}+e_{k}^{+}\right) \tag{7}
\end{equation*}
$$

Subject to:

$$
\begin{gather*}
\sum_{m=M_{k}} a_{m k} x_{m}+e_{k}^{-}-e_{k}^{+}+d_{k}^{-}-d_{k}^{+}=b_{k} \quad \forall k \tag{8}\\
e_{k}^{-} \leq E_{k}^{-} \quad \forall k \tag{9}\\
e_{k}^{+} \leq E_{k}^{+} \quad \forall k \tag{10}\\
d_{k}^{-}, d_{k}^{+} \geq 0 \quad \forall k \tag{11}
\end{gather*}
$$

where the b_{k} are observations (LV, OD, OT) relevant to the problem under consideration, $w_{\mathbf{k}}{ }^{d}$ and $w_{\mathbf{k}}{ }^{e}$ are weights ($w_{\mathbf{k}}{ }^{d}>w_{\mathbf{k}}{ }^{e}$) attached to "large" and "small" deviations, respectively, from the observed value of $b_{k}, d_{\mathbf{k}}{ }^{-}$and $d_{\mathbf{k}}{ }^{+}$are the magnitudes of "large" deviations from
$b_{k}, e_{k} \cdot$ and $e_{k}{ }^{+}$are the magnitudes of "small" deviations from b_{k} and $E_{k} \cdot$ and $E_{k}{ }^{+}$are limits on the magnitude of deviations that may be considered "small." In addition to the b_{k}, the values of $w_{k}{ }^{d}, w_{k}{ }^{e}, E_{k}{ }^{-}$and $E_{k}{ }^{+}$are inputs to the model which characterize the penalty functions for observation k. The values of $\mathrm{d}_{\mathbf{k}}, \mathrm{d}_{\mathbf{k}}{ }^{+}, \mathrm{e}_{\mathbf{k}}{ }^{-}$and $\mathrm{e}_{\mathbf{k}}{ }^{+}$are model outputs which reflect the deviations to be minimized.

The other major outputs of the model are the variables x_{m}, which represent the entries in the OD matrices for the truck classes considered. We will use the subscript m to denote a "market" - a combination of an OD pair and truck class. Thus, vans from origin A to destination B constitute one market, while three-axle trucks from A to B are a second, and vans from C to D are a third.

The values of $\alpha_{\text {mb }}$, which measure the extent to which x_{m} contributes to creating b_{b}, are inputs to the model. These are specified in different ways for different types of observations, as described more fully in the next section. M_{k} is the set of markets which contribute to the generation of $\mathbf{b}_{\mathbf{k}}$.

2.5 Illustrative Realizations of Equation (8)

As the reader probably realizes, Equation (8) represents a generalization of the LV, OD, and OT constraints. It is helpful, though, to consider how Equation (8) is customtailored to each of these constraints when actually implemented. Each involves a particular set of variables and constants.

LV Observation Realization

In the case of an LV (link volume) observation, the realization of Equation (8) is interpreted as follows. The value of b_{k} is the number of vehicles that have been observed
crossing a given facility (link), in a given direction (e.g, eastbound), within a given time span (e.g., between 6 and 10 AM), over some cluster of truck classes (e.g., 2-axle, six-tire and three-axle trucks). Subscript l references the link (actually, the directional arc) to which the observation b_{k} pertains, and the set of all LV observations is denoted by L. Equation (8) then transforms into:

$$
\begin{equation*}
\sum_{c} v_{k}+e_{k}^{-}-e_{k}^{+}+d_{k}^{-}-d_{k}^{+}=b_{k} \quad \forall k e L \tag{12}
\end{equation*}
$$

where:

$$
\begin{equation*}
v_{k}=\sum_{m e M_{k}} \alpha_{m} x_{m} \tag{13}
\end{equation*}
$$

is the volume on link l for truck class cluster $c, M_{l c}$ is the set of markets contributing to $\mathbf{v}_{\mathbf{l c}}$ and $\alpha_{l m}$ is the link utilization coefficient for link l and market m.

OD Observation Realization

In the case of an OD (origin-to-destination) volume realization, b_{k} is the number of trucks in a given truck class cluster observed moving from an origin zone/area to a destination zone/area. We will denote by F the set of all such observations. If r is the origin zone/area to which $b_{\mathbf{k}}$ pertains, s is the destination zone/area and c is the cluster of truck classes observed, then Equation (8) becomes:

$$
\begin{equation*}
y_{r x c}+e_{k}^{-}-c_{k}^{+}+d_{k}^{-}-d_{k}^{+}=b_{k} \quad \forall k \in F \tag{14}
\end{equation*}
$$

where:
is the volume within truck class cluster c predicted by the variables $x_{\text {m }}$ as flowing from r to s. In this case, α_{km} will be 1 if the origin and destination represented by market m are

$$
\begin{equation*}
y_{r s c}=\sum_{m e M} \alpha_{b m} x_{m} \tag{15}
\end{equation*}
$$

included in regions r and s, and the truck class represented by market m is included in cluster c. Otherwise $\alpha_{k m}$ will be 0 .

OT Observation Realization

In the instance where b_{k} represents an originating observation, it is the number of trucks observed in a given truck class cluster that originate in an origin zone/area (or at network node) r. Let R denote the set of all originating observations. Equation (8) then becomes:

$$
\begin{equation*}
y_{r c}+e_{k}^{-}-e_{k}^{+}+d_{k}^{-}-d_{k}^{+}=b_{k} \quad \forall k \in R \tag{16}
\end{equation*}
$$

where:

$$
\begin{equation*}
y_{r c}=\sum_{m e M} \alpha_{b m} x_{m} \tag{17}
\end{equation*}
$$

is the volume in truck class cluster c originating in region r as predicted by the variables x_{m}. In this case, α_{km} will be 1 if the origin zone represented by market m overlaps region r and the truck class represented by market m is included in cluster c. Otherwise α_{km} will be 0 .

In the case of a terminating volume observation, b_{k} is the number of trucks in a given truck class cluster observed to terminate in a destination zone/area (or network node) s. Let S denote the set of all terminating observations. Equation (8) is then rewritten as: where:

$$
\begin{gather*}
y_{s c}+e_{k}^{-}-e_{k}^{+}+d_{k}^{-}-d_{k}^{+}=b_{k} \quad \forall k \in S \tag{18}\\
y_{s c}=\sum_{m \in M} \alpha_{k m} x_{m} \tag{19}
\end{gather*}
$$

is the volume terminating in region s as predicted by the variables $x_{m} . \alpha_{k m}$ will be 1 if the destination zone represented by market m overlaps region s and the truck class represented by market m is included in cluster c . If not, α_{km} will be 0 .

2.6 Relationship to Previous Modeling Efforts

The linear programming model described in the previous two sections builds upoñ the work of several previous researchers. One of the earliest efforts to formulate the problem of estimating an OD matrix which would produce an observed set of link flows was by Robillard [1975]. He proposed a nonlinear regression model, but did not fully appreciate the degree to which the problem is underconstrained. A much more complete solution based on nonlinear programming was offered by Turnquist and Gur [1979]. This work also introduced the concept of a "target matrix" as a way of incorporating information other than link counts, but did not develop the idea fully.

Van Zuylen and Willumsen [1980] adapted Wilson's [1970] idea of "entropy maximization" to the problem, as a way of differentiating among alternative OD matrices, each of which would produce the same set of link volumes. This work was followed by several other authors (Van Zuylen and Branston [1982], Bell [1983, 1984], Fisk and Boyce [1983], Willumsen [1984], and Brenninger-Gothe, et al. [1989]), resulting in a series of improvements to the basic ideas. Through this series of contributions, the underlying theory
was improved and greater recognition was given to important empirical problems, like inconsistent or missing link data.

An alternative approach to the problem also developed in the early $1980^{\prime} \mathrm{s}$, based on a more statistical view. This is represented by the work of Carey, et al. [1981], Maher [1983], Cascetta [1984], McNeil and Hendrickson [1985], and Spiess [1987]. This line of thought is oriented around viewing the problem as a constrained regression problem, in which parameters of an underlying model are to be estimated so as to yield the "best fit" to the set of observed data. Both ways of viewing the problem lead to some form of optimization formulation, and Brenninger-Gothe, et al. [1989] have provided a good summary of the relationships among many of the models.

The approach taken in this project contains elements from several of these earlier efforts, but extends the formulation in some important respects. First, because we are interested in truck movements, we must deal with multiple vehicle classes and data which include observations over different subsets of classes. Some of the previous authors have mentioned multiple-class problems briefly, but their main emphasis has been on passenger cars.

Secondly, we want to provide control parameters sufficient to allow specification of both varying degrees of confidence in different observations as well as asymmetric error functions for overestimation and underestimation of observed values. This is similar in some respects to the previous work of Maher [1983] and Brenninger-Gothe, et al. [1989], but more extensive.

Third, we have developed a model which is designed to accept data in forms other than link counts. Our objective is to be able to use all of the available data, in whatever form, and from whatever source, it can be obtained. This is a much broader objective than
is present in the earlier efforts, and requires a more general formulation. Our formulation is different from the specification of a "target matrix" which is embedded in most of the earlier efforts, because we can explicitly create constraints on row-sums or column-sums (OT constraints), for example, in the OD matrices to be estimated.

2.7 Model Implementation

The implementation of the model described in Sections 2.4 and 2.5 consists of a workspace integrating three main application packages - TransCAD, dBASE III + , and LINDO. This is all done on a PC platform. The minimum hardware requirements are a 80386 processor (with 80387 math co-processor) and 4 Mbytes of memory. Figure $2 . \overline{6}$ illustrates the connections among the three application packages.

TransCAD is a GIS-based (Geographical Information System) transportation network analysis package capable of managing, manipulating, and graphically displaying network and spatial data pertaining to a geographic area of interest. It is a product of Caliper Corporation. TransCAD acts as the main display medium and the manager of the networkrelated data (links, nodes, link characteristics). For example, it is used to display the flow maps (network diagrams that indicate with directional thicknesses the volumes passing over the links). An example is shown in Figure 2.7.
dBASE III+ is a software package often used to create customized, menu-driven database management systems. It is a product of Borland International, Inc. In our application, dBASE III + is used to operate the menu system, edit data, and invoke various computational modules which are part of the model.

Figure 2.6 The TransCAD/dBASE III ${ }^{+}$/LINDO Workspace.

Figure 2.7 Example Flow Map Output.

LINDO is a stand-alone optimization package designed to solve linear and mixedinteger linear programming problems. It is a product of LINDO Systems, Inc., and is used here to solve the large linear programming model described in Sections 2.4 and 2.5.

A more comprehensive picture of how the workspace is used can be seen by focusing on Figures 2.8 through 2.11. Figure 2.8 shows the main screen of TransCAD with the Bronx network (to be described more fully in Chapter 3) displayed. Across the top banner are the main control options available. In this case, the IransCAD option is invoked to select the database layer of interest (links, nodes or zipcodes), reset the base map, and reach the data editor. Display lets you refresh the screen and set specifications about what is being displayed. Layer is accessed to create the flow maps, including the selection of the specific flow variables to be displayed (e.g, light, medium, heavy trucks, or total): Query is used to learn specifics about both links and nodes (e.g., names, volumes, other attributes). Select allows you to highlight links, nodes, or zones that meet specific criteria set by the user (see the later discussion about the Data Editor). Geography lets you add links and nodes to the network, as you might need to do if a newly snipped network is incomplete, or if nodes and/or links need to be added to an old network (e.g., new zone centroids or zone centroid connectors).

The data editor, reached through the TransCAD option, allows you to review the node or link data in tabular form. Figure 2.9 shows a representative screen. The links shown are from the datafile for the Brooklyn case study described in Chapter 4. Each row corresponds to a specific link; link attributes are arrayed across the columns. You can create conditions for selecting certain types of facilities, edit data entries, search for specific records, or engage in data input/output (e.g., dumping the links of an excised network into an ASCII datafile, importing the results of a flow estimation ran).

Figure 2.8 Trans CAD Main Menu (Example).

Figure 2.9 Trans CAD Network Data Editing Screen (Example).

The dBASE III + portion of the workspace creates the link utilization coefficients and the OD matrix estimates. Figure 2.10 shows the main screen from the dBASE III + workspace. TC lets you import network data exported from TransCAD into an ASCII file. This effectively starts the analysis of a given network situration. LK lets you review the link data, so you can ensure they are correct. ND provides the same capability for the nodes in the network. ZN is invoked to enter the zone centroid numbers (user defined) and their corresponding TransCAD node numbers. DP is used to enter control parameters for "Dials Algorithm." DA invokes the FORTRAN program that creates the coefficients.

FLON ESTIMATION PACKAGE
select the function you want.
Link Utilization Coefficients Network Flows
Input Data Editing
TC: Inport iranscad Data
LK: Review Link Data
wo: Review Mode Data
2N: Zone Centroid Data
DP: Control Parameterz
∞ : 0 flow constrisints
OT: OT Flou Constraints
LV: LV Flow Constraints
20: ∞ Zone Clusters
27: of Zone clusters
FP: Control Parameters

Run Programs
DA: Disis Algorithm
CF: Flow Estimetion
0: Quit
Choice: 0

Figure 2.10 dBASE III^{+}Workspace Main Menu.

On the right-hand side are functions most closely tied to creating the OD flow matrices. OD is used to enter the OD flow constraint data. It brings up a spreadsheet-like form where each row is an observation, and each column is a field. OT invokes a similar spreadsheet for the OT observations; LV is for the link volume observations. ZQ and ZT are used to specify the mappings of observation zones into the network model zones. EP allows the entry of a handful of control parameters needed by LINDO. CF invokes a series of data processing steps that: 1) ready the OD, OT, LV, etc. data for input to LINDO; 2) invoke LINDO to solve the linear programming problem described in Equations (7)-(12); and 3) postprocess the results to generate datasets that can be uploaded into TransCAD for display.

Not portrayed here, but of importance to someone who wants to use the workspace, is a fourth program called TCBuild (actually a part of TransCAD) that is used to expand, contract, and modify the network datasets maintained by TransCAD. The User's Manual for the workspace, a stand-alone document not contained in this report, provides additional details about how to use TCBuild, and all the other programs involved in generating the flow estimates.

2.8 Summary

Figure 2.11 provides a good summary of the methodology. It helps put the methodology and its models into context. Let's assume you have a traffic and/or truck movement problem of interest, and that you have examined it to determine what network should be used for analysis. Once you have done this, truck flow data are collected, so that OD, OT, and LV observations can be generated. In parallel with this, you construct the network database by excising the network of interest from some master database, or by

creating it from scratch. (In our case, TransCAD is used to select from the NYMTC master metropolitan New York network database, that portion needed for a given case study). You then transfer the network data from TransCAD to dBASE III + , specify the nodes corresponding to the various zone centroids, and compute the link utilization coefficients. In parallel with this, you enter the OD, OT, and LV observations into their respective datasets. Once both of these processes are complete (i.e., the link utilization coefficients exist and the OD, OT, and LV data have been entered), you invoke the "Create Flows" process, which sets in motion the dBASE III + routines and FORTRAN programs that prepare a master dataset for LINDO, invoke LINDO, and then postprocess the LINDO outputs to create the OD matrix dataset and the link volume estimates. These latter outputs, plus others, are then uploaded into TransCAD for display and/or printing so that the results of the OD matrix estimation process can be analyzed.

When a need arises to revise or expand the study scope, you iterate back through this process, changing the network if it needs to be adjusted, adding or deleting links, or making other changes. Independently, or in conjunction with such a change, you collect and/or enter more $O D, O T$, or LV data to sharpen the model's ability to find the best possible OD matrices. The result, at the end of this process, is either. 1) a set of OD matrices of sufficient quality that no further data collection or analysis seems prudent, or 2) an identification of data that must be collected in order to make the generation of such matrices feasible. The two case studies described in the following two chapters illustrate the steps of this process more explicitly.

CHAPTER 3

CASE STUDY I: THE BRONX

3.1 The Case Study Setting

As an application of the methods described in Chapter 2, this chapter is a case study focusing on the Bronx, the northernmost of the five boroughs which make up New York City. Figure 3.1 shows a map of the study area. The Cross-Bronx Expressway (I-95), from the George Washington Bridge at the western side of the study area to the BronxWhitestone and Throg's Neck Bridges in the southeastern corner of the area, is a primary corridor for truck flows. The connection to the Bruckner Expressway (I-95 and I-278) at the eastern side of the study area forms the most heavily used route to New England. The Major Deegan Expressway (I-87) is a principal north-south corridor along the western side of the Bronx, connecting with the Bruckner Expressway at the entrance to the Triborough Bridge. Although the study area focuses on the Bronx, the northern (uptown) end of Manhattan (north of 110 th St.) is also included.

This area is of particular interest as a case study for two reasons. First, the CrossBronx Expressway is scheduled for a major rehabilitation, requiring sections of it to be closed for extended periods. This will require that traffic be diverted to other routes, and the ability to predict flows for diversion studies is of considerable importance. Second, this area has a very high concentration of truck traffic. Data from the Port Authority of New York and New Jersey (PANYNJ), for example, show that more than 13,000 trucks cross the George Washington Bridge eastbound on an average weekday [PANYNJ, 1992]. In addition, the Hunt's Point area (south of the interchange between the Bruckner Expressway and the Sheridan Expressway - I-895) is the location of the major fresh meat and produce

wholesale markets for New York City, generating approximately 15,000 truck trips per day [NYSDOT, 1985].

3.2 Purpose and Scope of the Study

The primary purpose of this case study is to test the methods developed in Chapter 2, in order to understand how well they work, and to identify both strengths and weaknesses in the approach and its results. To accomplish this, we must assemble all the available data on truck flows in this area, create model constraints from the data, and then estimate truck origin-destination (OD) matrices, by time-of-day and vehicle class. These resulting trip matrices are the basis for conclusions regarding the nature of truck flows in the area, and identification of "holes" in the available data -- additional pieces of information which would be most helpful in building more precise estimates of truck flows. They also provide an important set of inputs for analyses of how such flows might change under specific changes in the network (such as closing the Cross-Bronx Exprssway), although that sort of diversion study is not included here.

Our analysis includes three separate time periods and three truck classes. The time periods defined are 6-10 AM (AM Peak), 10 AM - 3 PM (Midday), and 3-8 PM (PM Peak). Separate OD matrices are estimated for each time period, based on data pertaining to that time period. The analysis does not include the nighttime hours between 8 PM and 6 AM. The three truck classes used are VANS (light-duty trucks with two axles and four tires), MEDIUM (two-axle and three-axle single unit trucks), and HEAVY (trucks with four or more axles, and all tractor-trailer units).

The combination of vehicle classes and time periods means that a total of nine separate OD matrices are estimated, in three separate analyses. The three truck classes are
estimated together for each time period, but the time periods are done as separate analyses. As part of the analysis of truck flows in this case study, we want to pay special attention to separating flows of local, originating, terminating and overhead trips, defined as follows:

Local: trips whose origin and destination are both internal to the study area;
Originating: trips whose origin is internal, but whose destination is outside the study area;

Terminating: trips whose origin is outside, but whose destination is inside the study area;

Overhead: trips which pass through the study area, but whose origin and destination are both outside.

The reason for this separation is that there is evidence of large overhead flows in the CrossBronx corridor, particularly of heavy trucks moving from New Jersey to New England and Long Island. One of the objectives of the case study is to provide additional insight into the nature of these movements, by time-of-day, and to differentiate the temporal patterns of the overhead movements from those of local, originating and terminating traffic.

3.3 Zone and Network Deffinition

The zone definition (points of origin and destination for truck trips) is based on postal zipcodes. Figure 3.2 shows a zipcode map for the study area, and illustrates the zone definiton used. There are 36 zipcodes in the study area - 25 in the Bronx and 11 in northern Manhattan (including Ward's Island - area 10035). For our analysis, we have aggregated some of the areas across the northern end of the Bronx and in Manhattan, to reduce the number of actual analysis zones (internal to the study area) to 20 . The zone numbers are indicated in Figure 3.2. As shown in Figure 3.2, zipcode areas 10458, 10463,

Figure 3.2 Bronx area zipcodes.

10468 and 10471 are combined into zone 1 in the northwest corner of the Bronx. Zipcodes 10466, 10467, 10469 and 10470 are combined into zone 2, and zipcodes 10464 and 10475 are combined into zone 3. These aggregations are based on the fact that the land use in the northern Bronx is mostly residential, and generates relatively few truck trips.

In Manhattan, zipcodes 10033, 10034 and 10040 are combined into zone 4; and zipcodes 10026, 10027, 10030, 10031, 10032, 10037 and 10039 are combined into zone 5. The basis for this aggregation is to group those areas north of the George Washington Bridge and Cross-Bronx Expressway together, and separate them from areas south of the Bridge and Expressway. However, since we are interested primarily in truck flows in and through the Bronx, the loss of detail within these areas in Manhattan is not critical to the analysis, and allows us to reduce the overall problem size. Finally, zipcode area 10035 has been treated as part of the cordon (external) zone associated with the Triborough Bridge.

The seven external zones used in the analysis are also indicated in Figure 3.2. These zone definitions are as follows:

100: George Washington Bridge, to/from New Jersëy
101: 1-87 (New York State Thruway) north to/from Yonkers and western Westchester County
102: I-95 (New England Section of New York State Thruway) northeast to/from eastern Westchester County and Connecticut
103: Throg's Neck Bridge ($1-295$) to/from eastern Queens and Long Island
104: Bronx-Whitestone Bridge (1 -678) to/from Queens
105: Triborough Bridge (I-278) to/from Queens
106: Manhattan south of 110th Street.
The trip tables estimated are thus 27×27. We exclude intrazonal trips, so there are $27 \times 26=702$ unknowns for each truck class. These trip tables can be separated into sections for the various trip types:

Local: internal zone --> internal zone
Originating: internal zone \rightarrow external zone
Terminating: external zone ->> internal zone
Overhead: external zone $->$ external zone.
The network for which flows are predicted is shown in Figure 3.3. This network has been extracted from a larger, regionwide network maintained by the New York Metropolitan Transportation Council (NYMTC). The network for the case study includes approximately 750 nodes and 900 links. Most of the links are two-way. However, the toll bridges which collect tolls in one direction only have directional links separated. There are also some one-way bridges over the Harlem River, and some expressway interchanges which are "exploded" using directional links.

The zone centroids, which serve as origin and destination points for truck trips, are coded as nodes on the network. We have not created special zone-nodes, with connector links to the network, except for some of the external (cordon) zones.

Because we are analyzing only truck trips, several facilities which do not allow trucks have been removed from the network, at least in a logical sense, so that no trips are assigned to them. These facilities include the Henry Hudson Parkway, the Bronx River Parkway and the Hutchinson River Parkway.

3.4 Data Sources

Apart from the network itself, there are nine major data sources that have been used in this case study. The following subsections describe each of these sources briefly, including the type of data obtained from each, the originating organization, and the dates during which the data were collected.

- Rlverdale is with Westchester

Sample size = 1.148
Source: TETA Truck Survey.

Figure 3.4 Origin and destination areas for Queens-bound trucks at the BronxWhitestone Bridge.

Sample Size - 1.522

- Trucks only, excludes vans.

Source: TBTA Truck Survey.
Figure 3.5 Distribution of truck types for Queens-bound trucks at the Bronx-Whitestone Bridge.

Table 3.1 Example of a toll plaza profile for the Throg's Neck Bridge.

Timereuanh bidage a Tunnel Authorlity
Thicoge Nech Buthoe
wedneoder. ilitol

Haw	23	$2 ?$	21	20	10	13	15	14	13	12	11	10	9	\square	$0 \cdot 1$	Qroni	IIII	1911	9 n	1	1	6	9	-	4	3	?	19	31	Oueam	-1,901
I!mm	m	\underline{M}	M	M	E	A	m	M	A	M	\wedge	ז	\cdots	H	\wedge	Doum	A	M	M	A	E	A	-	A	M	-	E	M	M	Douma	T0101
100						11		91	12	76	1991		-			931				ii6		-236	19 l	153		1.				100	1.35
2:00						12		4	26	135	10 C		0			211						130	19	10		9				159	196
300						0			1.	130	97		0			? 1						17	10	12		69				710	549
1.00						0			19	180	19		0			269						69	130	1		12				275	340
500						2		9	36	168	13		38			${ }^{181}$						29	13 A	39		23				519	?20
6.00				0	120	76		179	03	$22 ?$	700	102	730		111	1,95					2		209	3		19				707	\%. 132
100	121	190	158	192	318	310		101	113	203	407	300	41		364	3,12					342	38	213	329		16	104	120	109	1,163	5.505
00	205	280	219	233	116	13?		260	119	323	183	420	4	? 19	621	4,					514	924	$33:$		219	292	103	219	29	2.169	2,336
900	253	246	119	213	363	131		229	49	$\underline{2} 2$	13	020	0	39		3.19				3301	315	116	? 1	0	2?	30 g	11	30 g	293	2.936	6.917
10:00	235	298	160	213	300	308		$1!$	398	26	$\underline{62}$	103	0	219		-3,491				292	315	10	$1 ?$	0	125	2!	220	217	117	2.530	0.048
$11: 00$	253	231	12	309	141	112		319	310	210	396	338	249	18		3,285				343	335	306	2 in	240		217	160	201	713	2.427	3.722
12:00	332	23	139	180	204	129		211	196	298	316	113	291			2.90				339	307	303	??	246		219	232	233	123	2.310	4, 092
17.00	170	160	19	14	19]	110		200	202	24	22	12	211			2.290				414	327	36	229	259		21	238	202	181	2.985	4.109
14.00	19	14	101	12.	19	119		19	24.	24	319	308	13			2.180			118	302	310	3 C	$32 ?$	281		330	2?2	1.9	161	2,160	1.183
$15: 00$	116	181	105	129	179	213		165	311	26	317	331	0			-2,453			213	113	11	43 ?	20			272	20	209	120	3.070	5,531
16.00	10	217	(11)	189	289	307		2? 2	49	250	4 ?	6	0			2.154		201	2!	193	198	Cid	2?	16	329	3.0	42	219	34	-3, 210	6. 74
1100	$3{ }^{2}$	3.1	19	19	330	417		235	19	139	111		0			2,123		11	361	117	120	49	343	-	393	3?	32?	2.6	209	4,292	$\underline{1.90}$
11.00	230	117	174	29	101	10		256		340	418					3,148		41	351	517	311	s11	$3:$	0	104	112	391	22	211	0,321	$\underline{1.70}$
1900	139	139	149	1.1	220	350		226	365	230	101	12	0			2.394		2.3	220	523	304	B11	20	309		311	12	209	108	$\underline{1.17}$	611
20.00			-量	12	302	307		$21 ?$	35	230	cis	35	123			2.19				:9	379	39	26 ?	. 20		200	$3{ }^{3}$	709	202	2.15	6.714
21:00			9	96	10	? 33		316	159	3 O	211	320	216			1, 1.15				319	181	219	351	379		23.	212	136	109	2.413	4.250
33.00			59	75	140	23.		180	339	392	322	101	32			1.180				181	310	22	313	391			119	100	11	20.2	2.135
? 300					127	233		112	141	208	328	215				$\underline{196}$				12,	242	122	211	212		123	$1{ }^{1}$		100	1,18	3.302
2400						136		139	181	232	113	112	0			1.203				211	206	206	226	296		17	19			1,802	2. 0 2
	2781	2.12	2.46	2.11	4.501	3,372		4,221	6.180	54	7,501	4.800	2.034	(17)	$1 \cdot 192$	32.890		1355	1,6	6.373	6.92	. 109	3.35:	. 301	1,610	3,363	960	398	2019	3, 4.49	106.218

E-EACCI

Table 3.2 Example of a monthly vehicle report for the Throg's Neck Bridge.

trmbonouch amoce amo tunnel authoatit

hevermue mamatement donision

MONTHLY VEHICLE REPORT
Thmocs nt:
AIAY-1091

Dale	$\begin{aligned} & \text { iay of } \\ & \text { Wect } \end{aligned}$	$\begin{aligned} & \text { Clovi } \\ & \text { Cor } \end{aligned}$	$\begin{gathered} \text { Class } 2 \\ \text { cur whlion } \end{gathered}$	$\left[\begin{array}{c} \text { Tlows } 3 \\ !\text { or what an } \end{array}\right]$	$\begin{array}{\|c\|} \hline \text { Cilasst } \\ 2 \text { guve } 7 \mathrm{rman} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Thess } 5 \\ \text { 1-ton. line } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Biow } \\ \text { Bate Trung } \\ \hline \end{array}$		$\left\|\begin{array}{c} \text { chann } \\ \text { sanc } 1 \text { enst } \end{array}\right\|$		$\begin{aligned} & \text { Gastr } \\ & \text { Iroun } \end{aligned}$		$\begin{aligned} & \text { quitry } \\ & \text { valobing } \end{aligned}$	Thal al l'elat Yehistors		$\begin{aligned} & \text { Towal } \\ & \text { Vematri } \end{aligned}$
STM51	Wednordor	01,10	1	${ }^{\prime}$	4.146	1	175	1.071	4.111	16	13	3	,	11.00	314	0.611
512/91	Inuride)	1.106	18	19	4.48	-	"	1.198	1.814	${ }^{13}$	I'1	,	-	1010.0	sat	103.014
31491	Prion	10)311	17	10	4,114	*	${ }^{11}$	1.0.11	4.41	6	${ }^{14}$,	,	116.119	4	17.asm
S31491	soluris	8.101	196	118	1.086	1	110	113	1,141	80)	4	-	-	$106.1+1$	\cdots	101.6
S/S/91	S-mer	"4).1"	m	"11	23	-	17	${ }^{31}$	84	14	-	-	,	us. 76.	sor	cin
sus)	Monder	06,183	3	"	3141	*	${ }^{111}$	${ }^{111}$	1.114	${ }^{10}$	11.	'	'	-s,0]	13	, 108
S/7191	Tucser	4, 1,114	4	13	4.19	10	14	1.131	4.40	111	*	-	,	91.89	301	0.111
S/NY1	wacasody	-3,189	01	10	*,016	-	\cdots	1.148	4.419	[1]	19	;	:	100.31 m	1	10.001
3/9/91	'hares,	01,048	11	1	4,1!	-	${ }^{19}$	1,184	a',	"	19	-	-	100, N0,	-	"
5/10,81	Prices	119.838	114	11	4.118	-	118	1,041	1.41	18	'0'	:	+	(11.01)	31	\cdots
S1181	Solurdes	115.14	136	${ }^{117}$	1,406	1	290	39	1.179	31	10	-	,	(10, 3^{\prime},	11	119
S1291	sencer	10s.034	'11	${ }^{13}$	43	-	106	134	131	\cdots	1	-	,	101.04	\cdots	10, 18.0
511391	Mlond.,	*,171	\because	${ }^{\prime \prime}$	2.001	-	136	\%	171	113	las	-	,	0,014	"*	mens
STIS91	Tarser	$\stackrel{1181}{ }$	4	10	411	1	1so	1.110	1.31)	14	13	-	1	1.45	$3 \cdot$	mes, $\mathrm{e}+$
3/1591	Wrances.r	P6,19	4	\because	4.100	-	19	1.138	(1911	110	11	-	-	s.an	\cdots	[10.0.4
S11691	'nursen	19318	104	${ }^{3}$	400	*	\cdots	1.139	\cdots	${ }^{101}$	19	1	-	"1. ${ }^{\text {a }}$	11	S
54191	Fricer	110.456	${ }^{\prime \prime}$	121	4303	-	111	1.101	c/14	iss	104	-	1	111,800*	\%	"
Sincel	saturay	111314	${ }^{211}$	111	1,40	,	317	140	1.17	13	*	-	1	113.17	\cdots	:
\$41991	sundi,	110.100	15	's1	313	-	13	13	${ }^{11}$	* 1	1	-	,	11,0.1	\cdots	111.11
512091	Alondat	$0 \cdot 31$	4	" 11	3,014	,	17	"	1420	13	3*	;	11	10.001		101,400
5/1181	Torides	0.161	$\stackrel{1}{1}$	4	4393	-	13	1.104	1.941	139	$1: 1$,	,	101.0.0.	30	[10,0)
511791	Wrdacosis	1101	\because	11	4.41	-	14	1.141	[13)	${ }^{2 \prime 2}$	13	-	-	16s.119	31	-
5/1331	Tharedoy	20.70s	134	130	4.118	!	23*	l,113	1.18	${ }^{213}$	16	1	,	116.101	\cdots	11.41
9/1197	triser	107.31	454	19	4,003	:	[1]	1.91	(11)	${ }^{13}$	111	-	,	119.1.0	403	119,001
9/13/91	Notordis	10.236	31	14	1213	-	14	34	1118	m	\because	-	,	100, 184	116	106.360
\$11691	Soater	130.69	111	111	4	-	117	116	" 19	411	,	-	1	104 50,	13	10.001
92791	Mantay	${ }^{13,14}$	114	17	$3{ }^{4}$	-	19	101	s1s	24	1	-	1	01..90	11	43.014
S/2nfol	Twiersan	103,201	19	'1'	4016	!	131	\%	4.151	181	11	-	1	101,001	314	110.24
S12981	W.encoses	ci, 238	${ }^{6}$	"	410	!	131	1.10	4.94	10s	\cdots	-	,	100.000	\cdots	126.431
319191	riles		181	19	4.1815	!	110	1,161 1.151		${ }_{\text {is }} 15$	111	1		101, 116	348	109,001
	rotal.	3,011,115	4.719	3,203	102,790	15	19.227	25.995	- inm.00i	6,111	S141	17	is	5, isi.sni	14.115	

and 7-axle trucks). Note that vans are included with passenger cars in the toll data. The average weekday volume, by truck class, is then broken down by time period using the total vehicle breakdown from the plaza profile. This implicitly makes the assumption that the temporal distribution of truck trips is the same as that for the traffic stream as a whole. This is not entirely accurate, and additional data could be used to improve this assumption.

These toll counts allow us to create a series of originating-terminating (OT) constraints at the TBTA bridges. Combining the toll data with the TBTA Truck Survey data, we can also estimate the van proportion of the total traffic count, and construct an estimate of total van originations and terminations at the TBTA bridges.

3.4.4 Thruway Toll Data

The New York State Thruway Authority has provided data from the New Rochelle Toll Plaza (external zone 102), representing I-95 to/from Connecticut. The toll data are illustrated by Table 3.3, and included a total of ten weekdays' data from May and June, 1992. For each day, the data show numbers of vehicles, by class and by hour, passing eastbound through the toll plaza. Because tolls are only collected in the eastbound direction at the New Rochelle Plaza, there are no data on westbound traffic.

Figure 3.6 shows the vehicie classification system for the Thruway, and illustrates some of the difficulty in interpreting the count data. It is clear that vans are considered in Class 1 , along with passenger cars, so the data provide no van counts. Class 4 includes medium trucks with two axles and six tires, but also includes some motor bomes, limousines, etc., so the count is likely to overestimate the number of trucks in this category. Similarly, Class 8 includes 3-axle trucks, but also includes buses, some motor homes, etc. Classes 5, 6 and 7 include the heavy trucks in which we are interested, but also include some other
types of vehicles.
Table 3.3 Example of Thruway toll data from the New Rochelle Plaza. $05 / 11 / 92$

TA-PRSTH

Statistics for NEW ROCHELLE - 05/11/今2 (inanual lanes)

Hour	$\begin{gathered} \text { Class } \\ 0 \end{gathered}$	$\begin{gathered} \text { Class } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{Class}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Class } \\ 3 \end{gathered}$	Class_{4}	$\begin{gathered} C l a s s \\ 5 \end{gathered}$	$\begin{gathered} C l a s s \\ 6 \end{gathered}$	$\begin{gathered} C l a s s \\ 7 \end{gathered}$	$\begin{gathered} \text { Class } \\ 8 \end{gathered}$	$\begin{gathered} \text { Class } \\ 9 \end{gathered}$	Total
1	0	724	6	17	17	160	6	19	4	1	954
2	0	324	3	6	19	199	3	28	2	0	584
3	0	225	0	14	22	203	3	23	2	0	492
4	0	179	4	12	24	245	E	15	5	0	490
5	0	284	0	4	24	214	4	13	4	0	553
E	0	477	2	8	60	234	E	29	10	10	836
7	0	1291	5	11	97	195	13	20	15	20	1667
8	0	2497	2	0	117	112	13	23	18	12	2794
7	0	2864	1	2	134	97	21	21	16	11	3167
10	0	1800	4	0	153	137	23	23	33	3	2182
11	0	1623	2	4	141	171	15	2	17	6	2091
12	0	1594	3	4	121	170	9	27	18	14	1960
13	0	1529	4	2	144	156	10	22	18	10	1895
14	0	1589	9	8	143	178	7	29	22	17	2004
15	0	1901	8	0	168	200	14	$\underline{\square}$	22	15	2354
16	0	1891	2	4	106	138	12	23	31	8	2215
:7	0	1845	7	2	93	136	10	18	9	3	2123
19	0	2023	1	11	60	108	17	13	5	4	2242
19	0	1905	3	20	53	128	11	24	4	4	2152
20	0	$15 E 5$	6	18	48	136	7	25	3	2	1811
21	0	1175	5	26	40	133	10	15	2	0	1406
$\underline{\square}$	0	1075	6	16	31	113	8	18	3	ϵ	1276
23	0	1027	4	23	23	133	3	17	1	2	1239
24	0	948	0	40	33	173	7	-5	E	0	1232
= = =	$==$ =	= = =	$=$ = =	$=$ = = =	$=\mathrm{=}=$	= = =	$==$ = =	= = = = =	= = = = =	= = = = $=$	
	0	32355	87	252	1877	3869	$24 E$	525	270	148	39629

3.4.5 NYCDOT Bridge Trafic Volumes

The New York City Department of Transportation (NYCDOT) operates 47 bridges within the City. Figure 3.7 is a map which shows the locations of these bridges. Eight of these bridges are in the Bronx and nine others cross the Harlem River, connecting the Bronx and Manhattan. These 17 bridges are within the case study area, and all but one (on the Hutchinson River Parkway) carry trucks.

Figure 3.6 New York State Thruway vehicle classification.

Figure 3.7 Bridges maintained by the City of New York.

Each year, usually during one week in the fall, NYCDOT performs a survey of traffic on the bridges. The reported values include counts of commercial vans and other trucks, in both directions (unless the bridge is one-way), by hour of the day. The "other trucks" category includes all trucks larger than vans.

These counts are quite important because they are a source of data on van movements. There are few sources of van data in the New York Metropolitan area, despite the general acknowledgement that vans are a major element of the freight movement system within the area.

3.4.6 Highway Sufficiency (S-1) Data

The New York State Department of Transportation maintains a set of data for all state highways that includes a variety of physical and traffic information. This dataset is known as the Highway Sufficiency Data, or S-1 Data. The basic traffic data from this source are Annual Average Daily Traffic (AADT) counts for individual highway segments. The Planning Division at NYSDOT has developed a set of factors which can be used to approximate the breakdown of this total daily volume by hour, and by vehicle class.

Each count location is classified into a "factor group" based on diurnal and seasonal variations in traffic. Most facilities in the New York City area are in Factor Group 3, which shows little seasonal variation. Within factor groups, volumes over specific periods of the day can be estimated, based on the values shown in Table 3.4.

Thus, for the three periods of interest to us, the proportions of AADT can be constructed as follows:

$$
6 \text { AM - } 10 \text { AM: . } 195
$$

10 AM-3 PM: 316
3 PM - 8 PM: . 338

Table 3.4 Fractions of AADT by hour for Factor Group 3.

Hour Ending	AADT Fraction	Hour Ending	AADT Fraction	Hour Ending	AADT Fraction
0100	.010	0900	.058	1700	.081
0200	.005	1000	.051	1800	.076
0300	.004	1100	.054	1900	.058
0400	.003	1200	.061	2000	.049
0500	.003	1300	.067	2100	.040
0600	.008	1400	.066	2200	.033
0700	.028	1500	.068	2300	.025
0800	.058	1600	.074	2400	.019

Source: NYSDOT Planning Division

From the counting stations in various regions of New York State where vehicle classification counts have been made, an estimate can be made of the proportion of total traffic which is pickup/vans, and the proportion which is larger trucks. For Region 11 (New York City), on arterials and expressways, the proportion of pickups/vans is approximately 10%, and larger trucks (medium and heavy) make up approximately 7% of the traffic. (See Table 3.5.)

Putting these two pieces of information together, we can estimate the proportions of AADT in each time period, by vehicle class, as follows:

| Vehicle Class | $6 \mathrm{AM}-10 \mathrm{AM}$ | $10 \mathrm{AM}-3 \mathrm{PM}$ | $3 \mathrm{PM}-8 \mathrm{PM}$ |
| :--- | :---: | :---: | :---: | :---: |
| Pickups/vans | 0.0195 | 0.0316 | 0.0338 |
| Medium + Heavy | 0.0137 | 0.0221 | 0.0237 |

Table 3.5 Approximate vehicle classification breakdowns, by region and functional class.

Where better, site specific information is available, it is used for vehicle counts, but in the absence of such information, these factors are used to estimate the applicable counts from $A A D T$ data.

3.4.7 Bronx Truck Route Study

In 1980, the City of New York contracted with DeLeuw, Cather and Co. to perform a study of truck routes in the Bronx. The report, produced in 1981, includes estimates of truck trip-end density for one-square-mile areas in the Bronx. These estimates are reproduced as Figure 3.8.

We have used these estimates to form "originating-terminating" (OT) constraints for the internal zones of the study area, covering medium and heavy trucks (excluding vans). The estimates are based on overlaying the square-mile grid on the zipcode areas, and estimating the fraction of each zipcode area in a particular trip-end density category. For each zipcode, the area (in square miles) is then used to convert trip-end density (trip-ends per square-mile per day) to an estimate of total truck trip-ends in each zone. Because the map in Figure 3.8 lists trip-end density as a range (e.g., 2500-5000 trip-ends per squaremile per day), we have used the mean (middle) value of each range to construct our estimates.

To allocate the total daily values among the three time periods (6-10 AM, 10 AM 3 PM, and 3-8 PM), we have used the factors described in Section 3.4 .6 (i.e., 0.195, 0.316, and 0.338).

Figure 3.8
Truck trip ends per square míle in the Bronx.

3.4.8 Hunt's Point Access Study

In 1984, a set of data was collected on truck movements into and out of the Hunt's Point area, where the main wholesale fruit, vegetable and meat markets for New York City are located. These data were provided for our use by the Region 11 office of NYSDOT.

The data contain three important pieces of information for the purposes of this study:

1) Approximately 15,500 trucks enter and leave the Hunt's Point area each day.
2) About 500 of these are tractor-trailer trucks, mostly arriving loaded from the west, and mostly at night.
3) A set of detailed vehicle counts was collected in the area of the BrucknerSheridan Interchange, including truck volumes on the expressways, the exit ramps and the entrance ramps.

The first two of these pieces of information provide an estimate of total originating and terminating truck traffic in the Hunt's Point zone (Zone 18 on the map in Figure 3.2). They also tell us that these truck trips are medium trucks and vans - the heavy trucks are entering and leaving outside the time period of our analysis. Finally, the vehicle count data are important for constructing link volumes around this important interchange; this process is described more fully in Section 3.5.3.

3.4.9 Vehicle Classification Counts on Expressways

The Region 11 Office of NYSDOT also provided a series of vehicle classification counts from various locations on the Cross-Bronx Expressway, the Sheridan Expressway and the Brackner Expressway. These counts provided breakdowns of vans, medium trucks and heavy trucks, by direction, during the three time periods under analysis.

3.5 Creating the Model Constraints

The optimization model which finds origin-destination matrices contains three major types of constraints, derived from the data sources discussed in the previous section. Some of the observations are directly related to specific origin-destization pairs - these produce "OD" constraints. Other observations are related to total trip-ends in some zone - these produce "OT" constraints. Still other observations relate to vehicle volumes on network links -- these produce "LV" constraints. The following three subsections illustrate the creation of each of these three types of constraints. Full listings of the constraint sets generated for the Bronx Case Study appear in Appendix A. Section 3.5.4 discusses the problem of inconsistencies among the various data sources, and how the model deals with those inconsistencies.

3.5.1 Origin-Destination (OD) Constraints

In total, the combination of the 1991 PANYNJ Truck Commodity Survey and the 1988 TBTA Truck Survey allowed us to create 40 OD constraints. None of these constraints pertain to local trips - all have one or both ends at one of the major toll bridges which are external zones for the case study because those were the locations at which the surveys were done. In addition, these constraints all apply to eastbound movements at the George Washington Bridge and southbound movements at the Triborough, Whitestone and Throg's Neck Bridges, because that is the direction in which tolls are collected.

As an illustration of creating OD constraints, we will focus on the use of the PANYNJ Truck Commodity Survey data, collected in December, 1991, at the George Washington Bridge. The survey data provided by the Port Authority contained 4,539 responses, of which 3,003 were useful in this case study. To be useful here, a response had
to have been collected between 6 AM and 8 PM , and have both number of axles and destination codes recorded properly.

A major element in creating OD constraints from these survey responses is relating the PANYNJ zone defïitions to the zone structure used in the case study, based on zipcodes. There are two separate aspects to this relationship: 1) determining which PANYNJ zones correspond to which internal zones for destinations within the study area, and 2) determining which PANYNJ zones should be mapped to which external zones for destinations outside the study area.

As an example of the first (internal zone) relationship, Figure 3.9 shows the PANYNJ zones within the Bronx. These six zones must be overlayed on the 18 zones defined from zipcode boundaries for use in the case study. Although the boundaries of zipcode areas and PANYNJ zones do not align exactly, we have used the following definitions:

In the constraints generated for the optimization model, this correspondence implies that a number of truck trips in a certain vehicle class observed at the George Washington Bridge and destined for zone 2510 , for example, would be represented as a constraint which says that the sum of trips in that vehicle class from zone 100 (GW Bridge) to zones 16,17 , 18 and 20 should be approximately the value observed (expanded from the survey results to approximate the total volume).

Figure 3.9 Port Authority zones in the Bronx.

To be specific, the survey results found a total of 89 heavy trucks (4 or more axles) destined for zone 2510 in the PM Peak (3-8 PM). Expanding the survey responses to account for the total volume through the toll plaza over the PM Peak period, this "observed" value becomes 145 trucks. If we define the generic variable Hxoxyyy to mean "heavy trucks from zone xxx to zone yyy" the following constraint can be written for the optimization:

$$
\mathrm{H} 100016+\mathrm{H} 100017+\mathrm{H} 100018+\mathrm{H} 100020+\text { deviation }=145 .
$$

For the external zones, the relationship of PANYNJ zones to case study zones is somewhat different. Because the PANYNJ zone structure covers a much wider area than our study area, several PANYNJ zones are coalesced into a single external zone. For example, trucks destined for PANYNJ zones 5100,5150 and 5210 in Queens, as well as all zones in Brooklyn (4700-4840), are assumed to exit the study area via the Triborough Bridge (external zone 105). Similar aggregations are defined for the other external zones.

The raw survey responses for trips terminating outside the study area were aggregated according to these definitions, creating observed values for "overhead" traffic originating at zone 100 (GW Bridge). For example, in the 6 AM - 10 AM period, there were 34 medium trucks (2 or 3 axle single unit) surveyed who reported destinations in Brooklyn (PANYNJ zones 4700-4840); or PANYNJ zones 5100, 5150 or 5210 in Queens. After expansion to account for the sampling rate, this became an "observed" value of 119 medium trucks with origin at zone 100 and destination at zone 105 .

3.5.2 Originating-Terminating (OT) Constraints

A total of 48 OT constraints were constructed, based on information from four sources - TBTA toll data, the Hunt's Point Access Study, the Bronx Truck Route Study and toll data from the Thruway Authority. As an cxample of creating these constraints, let us consider the use of the Thruway data. As mentioned in Section 3.4.4, the raw data were toll plaza counts from New Rochelle, giving eastbound volumes by truck class and by hour for ten weekdays. Because the data are for eastbound movements and pertain to a point on the northeast edge of the study area, the resulting observations produce "terminating" constraints - truck trips destined for zone 102.

Referring back to Table 3.3, which shows an example of one day's data, we see that the first step in creating constraint observations is to accumulate truck volumes over the appropriate hours (6-10 AM, 10 AM-3 PM and 3-8 PM) for medium trucks (classes 4 and 8) and heavy trucks (classes 5, 6 and 7). The result is six observed counts. This process is repeated for all ten days' observations.

Since we have repeated observations, we can compute both a sample mean and a sample standard deviation for each of the six counts. For the data obtained from the Thruway Authority, this process results in the following values:

	Medium Trucks		Heavy Trucks	
Time Period	Mean	Std. Dev.	Mean	Std. Dev.
6 AM - 10 AM	618	37	784	44
10 AM - 3 PM	852	52	1118	81
3 PM - 8 PM	458	22	787	106

The coefficient of variation (standard deviation divided by the mean) ranges from about 5% to about 13% for these six observations.

One of the interesting opportunities afforded by the presence of multiple days' observations, and the resulting ability to compute standard deviations in the counts, is that we have an empirical basis from which to specify the limits for the "small deviations" in the optimization model. In Chapter 2, where we introduced the nature of the error function which is minimized in the linear programming model, there are small deviations, e_{k} and large deviations, d_{k}, for each observation k. The e_{k} terms have a smaller slope in the error function, but can be no larger than the positive and negative limits, $E_{k}{ }^{+}$and $E_{k}{ }^{*}$. These limits on the "small" deviations in the model solution allow us to specify our level of confidence in any particular observation.

The ability to compute sample standard deviations for the observations from the Thruway data offers us the opportunity to specify the limits $E_{k}{ }^{+}$and E_{k}^{-}with direct empirical support. We have set these limits to the value of the standard deviations for the six observations from this data set. This implies that any model solution within one standard deviation of the observed sample mean will be considered "close," in the sense of having only a small deviation from the observed values.

For most of the data from which we have created model constraints, there is only a single observation. Hence, the specification of the limits, $E_{k}{ }^{+}$and $E_{k}{ }^{-}$, for these observations is relatively arbitrary. However, in this data set, we have an explicit statistical rationale for specifying the values. This is certainly a preferred situation. The Thruway data provide a good example of how multiple observations of the same volume can be used to improve our overall model input.

3.5.3 Link Volume (LV) Constraints

A total of 154 link volume constraints have been generated, based on count data from several of the sources described in Section 3.4. As an example of creating these constraints, the set of constraints generated for the links representing the Sheridan-Bruckner interchange will be described.

Figure 3.10 shows the count data obtained from the Hunt's Point Study for the Sheridan-Bruckner interchange. This figure also illustrates the geometry of the interchange itself. Figure 3.11 shows the coded version of the interchange as it appears in the NYMTC network, with the link numbers listed along the relevant links. Note, in particular, that the collection of two entrance and three exit ramps has been aggregated into a single link (649190) in the coded network, connecting the expressways with Westchester Ave.

The 1984 traffic volumes include total vehicles in the AM peak hour and PM peak hour, as well as total daily trucks. To derive truck counts for the 6-10 AM and 3-8 PM periods, we first expand the peak hour vehicle counts to the full periods, using the values in Table 3.4. The peak hour in the morning is either 7-8 AM or 8-9 AM, both having a proportion of AADT equal to 0.058. The total 6-10 AM proportion of AADT is 0.195 . Thus, the AM Peak period volume is likely to be $0.195 / 0.058=3.36$ times the AM peak hour volume. Similarly, the PM Peak volume is approximately $0.338 / 0.081=4.17$ times the PM peak hour volume.

For the midday period, we take the AADT value, and multiply by the average fraction in the $10 \mathrm{AM}-3$ PM period from Table 3.4, which is 0.316 . This gives an estimate of total vehicle traffic during the midday period.

Then, using the vehicle classification counts for the Sheridan and Bruckner Expressways shown in Tables $3.6-3.8$, we have approximate fractions of total traffic volume

Figure 3.10 Traffic volumes and geometry at the Bruckner-Sheridan Interchange.

Figure 3.11 Coded network representation of the Bruckner-Sheridan Interchange.

Table 3.6 Vehicle classification percentages on Bronx expressways in the AM Peak.


```
LEGENO:
    LIGHT TRUCK- INCLUDES 2 AXLES. }4\mathrm{ TIREES.
    MEDIUM TRUCK- INCLUDES 2 AXRES. S TIRES. 
    HEAVY IRUCK I- INCLUDES 3.^ AXLES SNGLE T TRUCKS
    HEAVY TRLUCKM- INCLUDES 3.4.8.6+AXLES SENMAILERS
```

Table 3.7 Vehicle classification percentages on Bronx expressways in the Midday.

locations	OIRECTION	*CARS	* MOTOA cYCLE	mbus	$\begin{aligned} & \text { WMINT } \\ & \text { BUS } \end{aligned}$	© LIGHT truck	4 MEDIUM truck	4 HEAVY truck:	m MEAVY truck II	$\begin{gathered} \hline \text { Q YELIOW } \\ \text { TAXa } \\ \hline \end{gathered}$	VEH OCCUPANCY
CROSS BRONX-EASTERN END	EB	70.43	0.15	0.33	8.79	3.00	4.30	197	10.91	012	1.3
(BEt Rosedale a white plains rd)	ws	01.51	0.04	0.30	9.58	5.10	4.62	1.34	17.40	011	1.2
CROSS BROMX-WESTERN END	Eb	74.37	0.30	0.07	298	5.79	5.52	350	7.42	005	1.2
(BET JEROME A WEBSTERAN	wo	03.44	0.16	0.32	7.10	514	7.02	103	14.97	022	14
SHERIDAN EXPWY	NB	69.95	0.21	0.13	6.63	0.95	6.10	2.03	7.59	0.11	14
(BET E. 172 St \& westchester av.)	S8	80.68	0.25	085.	4.37	6.53	3.02	1.36	2.41	055	14
BRONX RIVER PKWY	NB	86.47			12.01	0.80	0.22	0.00	0.00	009	11
(NOATH OF CBE PRIOR TO BRONX $2 O 0$ EXIT)	sB	89.99	0.05	0.21	5.54	3.75	0.12	0.00	000	0.34	13
QRUCKNER EXPWY	EB	78.88	0.20	2.50	300	9.46	504	078	2.81	052	1.4
(AT BRP INTERCHANQE)	wb	10.45	0.14	0.98	5.12	0.89	5.91	135	8.56	080	14

[^0]Table 3.8 Vehicle classification percentages on Bronx expressways in the PM Peak.

[^1]that are vans, medium trucks and heavy trucks, for all three periods of the day. This allows us to estimate truck volumes for each vehicle class in each period of the day.

Finally, the various values need to be assigned to specific links in the network. The only unusual part of this process is the aggregation of the exit and entrance ramp counts. The total exiting and entering volume is assigned to link 649190, the ramp link representing all of the exiting/entering movements in this section of the network.

3.5.4 Resolving Inconsistencies in the Data

Because data have been obtained from several different sources, and those sources collected the data in different ways and at different times, the individual observations are not always consistent. A good example of the type of inconsistency which exists among observations involves the estimated flow from the George Washington Bridge to the Throg's Neck Bridge (zone 100 to zone 103).

One source of data on this movement is the Port Authority Truck Commodity Survey. This survey was conducted in 1991, and sampled trucks eastbound at the George Washington Bridge. One of the data items collected was the reported destination (or next stop) for the truck. Based on that data source, and using the methods described in Section 3.5.1, we have estimated the "OD" values shown in Table 3.9.

Table 3.9 Estimated flows from zone 100 to zone 103 based on Port Authority Truck Commodity Survey.

	Number of Trucks		
Vehicle Class	AM Peak	Midday	PM Peak
Medium	327	220	150
Heavy	481	381	190

A second source of data on this same movement is the TBTA Truck Survey. This survey was conducted in 1989, and sampled trucks Queens-bound at the Throg's Neck Bridge. One of the questions asked was the origin of the trip. Based on that data, we have estimated the "OD" values shown in Table 3.10.

Table 3.10 Estimated flows from zone 100 to zone 103 based on TBTA Truck Survey.

			Number of Trucks
Vehicle Class	AM Peak	Midday	PM Peak
Medium + Heavy	180	190	250

The Port Authority-based values are between 1.3 and 4.5 times larger, with the largest difference in the AM Peak. There are several possible reasons for this difference, including the following:

1) The expansion from survey proportions to total flow proportions is in error.
2) The translation of survey origins and destinations into zone definitions used in this analysis is incorrect.
3) The estimate of flow proportions by time-of-day in the TBTA data is in error.
4) The differences exist because the data were collected about two years apart.
5) The survey results are erroneous in one or both surveys.
6) Some combination of reasons 1-5.

The expansion from survey proportions to total flow estimates has been done differently for the two surveys. For the PANYNJ survey, we have both the raw survey responses and the toll booth counts of trucks by hour during the survey period. For the TBTA survey, we have only the total percentages of trucks by aggregated origin areas (see

Figure 3.4) and the aggregate estimate of truck flows by time of day based on plaza profiles of total vehicles and monthly classification breakdowns (see Tables 3.1 and 3.2). Thus, the expansion of the TBTA survey results is subject to much larger potential errors, particularly by time-of-day.

The specification of origin and destination areas in our processing of the two surveys is also done differently. In the TBTA survey, we have assumed that the reported origin area "New Jersey" (see Figure 3.4) corresponds to the George Washington Bridge (zone 100). In the Port Authority survey, the reported destination is a PANYNJ zone number, and we have aggregated several of these zones in eastern Queens, Nassau County and Suffolk County into our zone 103, as described in Section 3.5.1.

The fact that the surveys were done about two years apart is a potential source of significant variation in results. However, to minimize this likelihood, we have expanded the TBTA survey proportions using May, 1991, toll data. This should effectively remove the differences in time period as a significant source of error.

Although the differences in these observations are quite substantial, particularly in the AM Peak period, we have decided to use both observations, with relatively loose "small deviation" limits indicating low confidence in the specific observations. The optimization model then balances off the differences, together with all other observed values entered as data.

3.6 Results of the Analysis

The results of the analysis are nine OD matrices and the associated sets of link flows on the network. As illustrations of the most interesting aspects of these results, we will focus on four subsets of the information:

1) the breakdown of total truck link flows in the PM Peak by truck class;
2) the changing pattern of overhead heavy truck link flows across times of the day;
3) the deviations from observed link counts for the PM Peak; and
4) the composition of the heavy truck trip table in the PM Peak.

Figure 3.12 shows the flow pattern for all trucks in the PM Peak period. Notice the large volumes on the major expressways and bridges: 1) across the George Washington Bridge, particularly in the westbound direction; 2) in both directions on I-87 running north into Westchester County; 3) on the Cross-Bronx Expressway and out to the northeast on the New England Section of the New York State Thruway; 4) on the Bruckner Expressway particularly southbound toward the Triborough Bridge; and 5) across the Bronx-Whitestone and Throg's Neck Bridges, in both directions.

There are also very significant flows on some arterials, notably Westchester Ave. and White Plains Road, as well as a major concentration of truck traffic in the southwestern section of the Bronx. The concentration in the southwest Bronx is a direct result of the land use data input to the model (see Figure 3.8), which indicates a very high density of track trip-ends in that part of the analysis area.

Figures 3.13 - 3.15 show the breakdown of the total link flows by vehicle class. Figure 3.13 shows the van flows and illustrates that much of the total flow in the southwest part of the Bronx, as well as on Westchester Ave. and White Plains Road, is van traffic. The concentration of vans for local trips is to be expected, but there are also large van flows on I-87, on the eastern section of the Cross-Bronx expressway and on I-95 headed for New England.

Figure 3.12 Total truck flows for the PM Peak (3-8 PM).

Figure 3.13 Van flows in PM Peak (3-8 PM).

The medium truck flows, shown in Figure 3.14, are more concentrated on the expressway network, and constitute a larger fraction of the traffic on the major bridges. Note the very large flow out of the Hunt's Point area, and south on the Bruckner Expressway toward the Triborough Bridge.

The heavy truck flows are almost all on the expressway system, as illustrated in Figure 3.15. The largest volumes are on the George Washington Bridge, the Cross-Bronx Expressway and the Bruckner Expressway.

Additional insight into the flow patterns of heavy trucks is provided by Figure 3.16, which shows overhead (i.e., external to external) heavy truck flows in the PM Peak period. Notice that to make these flows clearer, the sefie has been changed on the link widths. Figure 3.16 illustrates the dominant flow of heavy trucks eastbound across the George Washington Bridge and the Cross-Bronx Expressway, then north on the Bruckner Expressway and the Thruway toward New England. This flow pattern is quite evident in the input data from the PANYNJ Truck Commodity Survey, gathered at the George Washington Bridge. Secondary flows of importance in the overhead heavy truck movements are: 1) northbound traffic on I-87 into Westchester County, and 2) southbound traffic across the Throg's Neck Bridge to Long Island.

Figures 3.17 and 3.18 show the overhead heavy truck trips for the AM Peak and Midday periods, respectively. (add more when figures are available)

Figure 3.19 shows the deviations from observed link counts during the PM Peak. There are six locations where the model is unable to create a solution which closely matches the observed counts. The largest of these deviations is 213 vehicles, or about 42 trucks/hour, on I-87 just north of the Cross-Bronx Expressway. The deviations on I-87 both north and south of the Cross-Bronx Expressway may reflect some problems in coding the

Figure 3.14 Medium truck flows in the PM Peak (3-8 PM).

Figure 3.15 Heavy truck flows in the PM Peak (3-8 PM).

Figure 3.16 Overhead flows of heavy trucks in the PM Peak (3-8 PM).

Figure 3.17 Overhead flows of heavy trucks in the AM Peak (6-10 AM).

Figure 3.18 Overhead flows of heavy trucks in the Midday (10 AM - 3 PM).

Figure 3.19 Derivations from observed link volumes, in the PM Peak (3-8 PM).
truck movement restrictions on the ramps leading from the Cross-Bronx Expressway to I-87 (the Major Deegan Expressway).

The composition of the heavy truck origin-destination table for the PM Peak period is the fourth set of results to be discussed. Figures 3.20-3.23 illustrate the parts of this trip table graphically. Figure 3.20 shows the local (internal zone to internal zone) trips. Figure 3.21 shows originating trips, and Figure 3.22 shows the terminating trips. Finally, Figure 3.23 shows the overhead (external zone to external zone) trips. For the purposes of creating these graphs, zones 8, 9, 10, 11, 15 and 19 have been grouped together and labeled "SE Bronx." Zones 12, 13, 14, 16, 17, 18 and 20 are grouped together under the label " SW Bronx." This aggregation results in some apparent "intrazonal" trips (e.g., SE Bronx to SE Bronx in Figure 3.20). These trips are not intrazonal in the original disaggregated trip table.

Figures 3.20-3.23 show that the resulting trip tables from the model are relatively sparse. This must be expected from an optimization which is based on linear programming. We are currently exploring an additional step in the overall model which would produce more highly populated trip tables.

In Figure 3.21 (originating trips) notice the very large volumes of trips from SE Bronx to Zone 100 (New Jersey via the George Washington Bridge), and from SW Bronx to Zone 105 (Queens via the Triborough Bridge). It is unlikely that the real trip pattern is this concentrated. The model produces this result because there are relatively few link volume observations to force more dispersed OD flows, and the easiest way for the model to match the total volumes on the bridges along with the OT constraints by zone, is to create a small number of large interchange volumes.

A similar pattern is present in the terminating volumes, shown in Figure 3.22. Notice the very large volumes from Zone 106 (Manhattan) to both SE Bronx and SW Bronx. This

Figure 3.20 Local heavy truck trips in the PM Peak (3-8 PM).

Figure 3.21 Originating heavy truck trips in the PM Peak (3-8 PM).

Figure 3.22 Terminating heavy truck trips in the PM Peak (3-8 PM).

Figure 3.23 Overhead heavy truck trips in the PM Peak (3-8 PM).
result appears to derive from the observed volumes on the NYC bridges crossing the Harlem River.

Finally, in Figure 3.23 (overhead trips) notice that most of the volume is originating at Zone 100. This is the result of the OD constraints from the PANYNJ Truck Commodity Survey, taken at the George Washington Bridge. These constraints force a large number of origins at Zone 100, and distribute the destinations roughly as they appear in the final solution. Since these constraints only apply to eastbound trips, there is little to force overhead trips in the westbound direction.

3.7 Conclusions

The first major conclusion from this case study is that it has shown that the methods developed in the project work. We have taken data from nine different sources, collected in different ways and at different times, and have synthesized all of these observations into a coherent database. This database is represented as a set of constraints for a linear programming problem which finds a set of trip tables. In this case study we have demonstrated the ability to find trip tables for three truck classes and three separate time periods during the day.

The analysis produces very plausible link flows over the network. The link flow results of the analysis are likely to be more reliable than the OD tables themselves. As described in the previous section, the OD tables have a relatively small number of non-zero entries, and those entries tend to be quite large. It is likely that a better solution would have more, and smaller, non-zero entries in the OD tables. This result is evidence of lack of data in a few crucial areas.

By looking carefully at both the OD tables and the link flows, we can identify several important "holes" in the input data. The three most important of these are:

1) the paucity of data on van movements;
2) the lack of survey data on westbound mo:ements; and
3) the need for more complete ground counts over more of the network.

The lack of van data is particularly troubling, because of the large amount of anecdotal evidence that vans form a major element of the goods movement system within New York City. We have created OD tables for vans, but these would benefit greatly from additional data. Ideally, this additional data should include survey data on origins and destinations as well as ground counts on network links.

The truck survey data which do exist in this area are all for eastbound movements, because that is the direction in which tolls are collected at the major bridges. The result is that we have relatively little confidence in the estimates of westbound truck trips. Since surveying truck in the westbound direction is difficult, additional ground counts on the arterials as well as the expressways would help greatly.

In general, there is little link volume data in this case study. What exists is mostly on the expressways. We have almost no information on truck flows on the arterial streets.

When there is little link volume data, the results are very sensitive to the estimated link-utilization coefficients on the facilities which do have counts. This is particularly noticeable on the bridges crossing the Harlem River. The fact that we have counts on those bridges, and on virtually no streets in their vicinity, gives those bridge counts enormous leverage on estimated OD volumes for local trips. This produces some of the results noted in the discussion of Figure 3.20. Additional vehicle classification counts, particularly on the arterial streets, would be most helpful to improve the reliability of the results.

CHAPTER 4

BROOKLYN CASE STUDY

This chapter describes the Brooklyn case study, its conduct, and the results obtained. While all of Brook ${ }^{2}$ m is included, the primary focus is on the area surrounding the Gowanus expressway. NYSDOT is in the process of rehabiliting that facility through a multi-year, multi-million dollar highway reconstruction project.

4.1 Purpose and Scope

The case study has three main purposes. The first is to test the methodology, and learn about its strengths and weaknesses. The second is to develop trip matrices for the network, using the methodology, and compare them with other known information about flow patterns in the area. The third is to identify holes in the data used to generate the matrices and identify ways to fill those holes.

Brooklyn is a natural choice because the Gowanus Expressway study has generated a rich set of truck-related data. Truck movements are heavy on the Gowanus, and many truck-based activites lie within the Gowanus corridor, so the engineering consultant has collected considerable traffic data, much of it focusing on truck flows.

The case study does not supplant or replace the engineering consultant's work, but rather, supplements it. In addition, and perhaps more importantly, it takes advantage of the rich supply of truck related data available to test and exercise the methodology. Also, since the engineering consultant has also been in the process of generating such OD data,
there is an opportunity to cross-check the quality of the matrices obtained based on the engineering consultant's efforts.

The scope of the study includes all of Brooklyn plus the southern end of Manhattan, as shown in Figure 4.1, having major points of entry via the Verrazano Narrows Bridge, the Brooklyn Battery Tunnel, the Manhattan Bridge, the Williamsburg Bridge, the BrooklynQueens Expressway, Atlantic Avenue, Linden Avenue, and Flatlands Avenue. (See Figure 4.4 for a map that shows street names.)

Three truck classes are considered: 1) commercial vans, 2) single unit trucks (primarily two-axle-six-tire or three axle), and 3) trucks with four or more axles. In some instances, it is possible to distinguish between two and three-axle trucks, but neither of the two primary data sources available do so. The data collected by the engineering consultant classifies trucks as either light (two-axie, four tire), medium (two-axle, six tire) or heavy (all other) and the data collected by the New York City Department of City Planning categorizes them as being either a) vans and pickups, b) single unit trucks, or c) combination trucks. The scheme we have chosen matches that used in the Bronx case study, and helps delineate between trucks used for local deliveries as opposed to long-haul movements.

Three time periods are considered: AM peak (from 6-10 AM), midday (from 10AM to 3PM), and PM peak (from 3-8 PM). These time periods match those commonly used to analyze traffic flows within the New York metropolitan area.

Figure 4.1: The Brooklyn Case Study Environment and Network

4.2 Problem Setting

4.2.1 Description of the Area

A dense grid of major and minor arterials exists throughout the network, including Ocean Parkway, Ocean, Flatbush, Utica, and Remsen Avenues and Rockaway Parkway, all of which run north-south, and Flushing, Myrtle, Fulton, Atlantic, Linden, and Flatlands Avenues and Eastern Parkway, which run east-west. (See Figure 4.4, presented later, for the locations of these streets.)

Not far beyond the network's eastern boundary is the Van Wyck Expressway which runs north-south in Queens between JFK and LaGuardia airports. On the north is the Long Island Expressway, which runs east-west through Queens from Manhattan, past the BQE to the Van Wyck and beyond.

As shown in Figure 4.2, the area within Brooklyn is divided into 27 zones, one for each of the borough's 5-digit zipcodes. Seven external zones are also employed, focusing primarily on major entry points into the network. Table 4.1 gives details about both the internal and external zones.

4.2.2 The Network

The network, which is derived from the NYMTC highway database, contains 523 nodes and 901 links. Most of the links are bi-directional, with the exception of a few oneway streets, and the bridges and tunnels, which are represented by separate links in each direction. Zone centroids are defined as network nodes. Facilities whose use by trucks is prohibited include the Shore Parkway, the Interboro Parkway, and the Brooklyn Bridge.

Figure 4.2: The Brooklyn Case Study Zone Structure

Table 4.1: Zone Descriptions for the Brooklyn Case Study

Network Node	2ipcode	Area sq-mi	Post Office Name or Description
5683	11209	2.03	Fort Hamilton
6219	11228	1.64	Dyker Heights
6221	11214	1.98	Bath Beach
5750	11223	2.1	Gravesend
6225	11224	1.59	Coney Island
5822	11235.	2.14	Bay
5838	11229	2.16	Homecrest
6211	11234	10.09	Ryder
5835	11210	1.7	Vanderveer
5757	11230	1.83	Midwood
6210	11204	1.52	Parkville
5726	11219	1.51	Blythbourne
5685	11220	1.7	Bay Ridge
5686	11232	2.19	Bush Terminal
5744	11218	1.3	Kensington
2129	11226	1.42	Flatbush
2133	11203	2.16	Rugby
2105	11213	1.07	Saint Johns
6171	11225	0.86	Lefferts
5715	11215	2.23	Van Brunt
7222	11231	1.52	Red Hook
2081	11217	0.77	Times Plaza
2082	11238	1.05	Adelphi
2084	11216	0.96	Brevoort
5774	11205	0.82	Pratt
1819	11201	1.46	Brooklyn
6122	11211	1.93	Williamsburg
11683	-	-	Brooklyn Battery Tunnel
11684	-	-	Manhattan Bridge
11686	-	-	Williamsburg Bridge
11687	-	-	Brooklyn-Queens Expressway
11682	-	-	Verrazano Narrows Bridge
1922	-	-	Atlantic Avenue E Brooklyn Line
1863	-		Linden Boulevard Brooklyn Line

Congested travel times are provided for each link, based on the Tri-State Planning Agency's experience (originally the metropolitan area's Metropolitan Planning Organization) with assigning trips to the network.

4.2.3 Data Sources

Data for the case study come from seven sources, not counting the NYMTC network database from which the network is derived:

The Gowanus Study Engineering Design Consultant provided link volumes and classification counts for the Gowanus Expressway, the BQE and several arterials. Table 4.2 illustrates these data. Light trucks are defined as two-axle-four-wheel vehicles other than cars, medium trucks are two-axle-six-tire, and heavy trucks have three or more axles. In some cases, the data show hourly volumes as well as a percentage breakdown. In other cases, either just the hourly volume or just the classification data are provided.

For the Brooklyn Battery Tunnel, the Queens-Midtown Tunnel and the Verrazano Narrows Bridge, the Triboro Bridge and Tunnel Authority (TBTA) provided 1991 counts by direction and hour across a typical day (see Table 4.3) and vehicle counts by vehicle class and day for a typical month (see Table 4.4). The volume profiles by hour (Table 4.3) do not differentiate among vehicle classes wheras the monthly vehicle reports (Table 4.4) do. Class 4, Two-axle trucks, refers to trucks with six tires. Vans, whether commercial or not, are grouped in with Class 1 , cars. Otherwise, the number of axles is the basis for classification.

Gowanus Expressway TSM Study Traffic Data

Roadway: GOWANUS EXPRESSWAY

Location:	Berween S ST				And BQE MERGE			
6-2/,	incound							
S-2/1	MP	MO	${ }^{\text {AP }}$	N	MP	MD	1 AP	N
\% O Moving Lanes	3	2	1	2	1	2	13	2
* Af Parking Lanes	$1-$	-		-	-	-	$1-$	1-
Capacity	14200	2850	1400	2800	1400	2600	4200	2820
Hourty Vorurre	13600:	1420	660	760	1060	2670	12570	2210
\% Bus	3	5	6		13	2	4	1
\times Minibus	1	1	1		1	1	2	
\times Taxi	1	3	5		1	2	7	1
\times Mororcyes	1	0	0		0	1	1	1
\% Lift Truck	9	4	3		7	7	5	I
* Medium Truck	1	2	1		6	2	1	1
\% Memy Truct	0	0	0		2	0	0	
\% Cr	82	85	83		70	86	86	
Singre Decupen \%								I
2 Ccouperx\%								
3 Oecerpent $\%$							1	
4+ Ocoupant \%							1	

Location : SQE Betwen RAPFLYE ST. (BQE)					And EOWHNUS MERGE			
G-4/3 *	molound				M		cund	
			${ }^{+}$	N	${ }^{\text {mp }}$	mo	${ }^{\text {a }}$	N
-a Moving Lenes	2	2	2	2	3	3	3	3
-a Perining Lamem	-	-	-	-	-	-	-	-
Capocty	3200	13200	3600	3600	4200	4800	15400	15400
Houry vowe	3000	12320	3090	3030	2860	2010	13530	12830
x 8un	0	0	0		1	0	ㅇ.	
x Minibua	0	1	0		1	0	0	
\times Tmad	1	1	1		0	1	1	
8 Motaryyo	0	0	0		0	1	10	
x Ulom Track	12	7	6		7	9	12	
¢ Medum Truck	2	6	4		5	2	2	
8 Hoemy Truck	6	3	3		5	3	3	
8 Car	78	81	84		75	5	4	I
Singe 0ccupent $\%$	-						1	
20 coupen \times							1	
30 caypant x							1	1
$4+0$ coupant \%							1	1

Table 4.2: Gowanus TSM Project Classification Data (Example)

Table 4.3: Hourly Breakdown of Vehicle Arrivals (Example)

mevenue manage ment division

MONTHLY VEHICLE REPORT

GROOKI.YN HATII:ITY TUNNI:L.
MAY. |gyi

Ilmage	llay of Werh		$\begin{aligned} & \text { Almes } \\ & \text { Amellan. } \end{aligned}$		$\begin{gathered} \text { Clunst } \\ 1 \text { cale Tinat } \end{gathered}$		IVmi 3 male Trunh	Clung tunk Tinah	Hand 5 calr Gimh	Clusis Mhenurgiche	$\begin{aligned} & 0 \text { inle } \\ & 1 \text { suan } \end{aligned}$	$\begin{aligned} & 7 \text { Anle } \\ & \text { Tomin } \end{aligned}$	$\begin{aligned} & \text { Tudel Prold } \\ & \text { Veblates } \\ & \hline \end{aligned}$	Ilavi 16 Amen.Mevenues	Midan
$5 / 181$	wrineedes	caici	1	,	8.188	1,53	38	${ }^{28}$	m	180	2		81.812	1.189	0.10
S/271	rierser	sases	,	;	1.085	1,0es	48	\%	140	H	*		ct.106	1.101	01.80
3/M\%1	brider	17850	-	1	1.144	1,914	310	3	27	208	4		41,011	1.14	- ! 17
Slass	simertar	44.30	1	3	II'	\cdots	5	13	,	13	\cdots		1	301	1
s/swis	Somes	4ess\%	-	1	3	11	33	,	*	19	1			304	13,0m
S/wal	Moater		-	1	1.1400	1,061	111	N	\cdots	4	1		23,18,	1.0)m	9.180
377891	rocmar	31.90	2	-	1,111	1.013	1 mm	19	H	se	-		11.500	1.100	cmom
5/men	w-deceder	36.118	1	1	1.191	1.014	431	11	4	mom	14		c. 318	0.131	
S/W31	rworetir	31,374	3	-	0.401	1.88	411	$\underline{4}$	31	101	3		-1,501	1,184	-1,101
S/1esil	cidser	-3,013	-	-	1311	2,0mi	411	4	4	st	-		17,414	1.111	an.ser
5/11/91	Seturat	14.941	4	1	30	201	111	11	,	210	-		81.0 cm	341	38.100
311291	yueses	9,17n	-	-	"	11	3	1	,	4	1		38,11	43	1, 0 -
31151	Mondey	34.181	J	1	1,114	2,094	11	2	\cdots	H	1		30, 131	1.000	30.101
311491	Tuesing	\$3.00	1	1	1,116	1.018	111	4	4	2s	-		31,01)	1.103	10.1 m
\$115931	Wrancider	51,04	1	-	1,8m	2.011	41	4	v	61	1		01.40	1.100	02,00s
311931	thursdes	4, 313	-	-	1.176	2,011	418	\%	11	130	-		co.s7a	1,11	cs.av1
\$11761	firdes	01.040	-	1	1.941	2.011	31	3	4	m	1		N, 0×0	1.50	61.:94
S/1us	seturday	41.104	1	1	H	38	ω	-	-	14	-		41.024	${ }^{11}$	11,.46
\$118181	SuAdsy	3 mm	1	,	43	15	43	,	3	171	-		0.111	$\mu \mathrm{H}$	19,0m
s/zasy	Moates	40.813	1	1	4.193	2010	$4 \times$	3	*	208	10		se.010	1.11	1.108
S/1131	Tucades	20,980	1	-	1,33)	2.001	203	31	so	329	s		ce.0ne	1.134	41,954
5/2291	wadnectas	88.150	*	-	1.894	2.010	3	16	as	111	11		11, 5 en	1,077	6.1331
Shypl	rtheruses	class	1	,	1.508	1,01	416	n	4	138	-		4, 1 mm	1,183	40.02
- s/2001	Dictes	ce.ent	13	1	1,187	1,006	438	s	\cdots	14	,		cs.mm	1.114	10:
shays	saluent	13.400	3	-	131	"10	m	*	,	*av	-		-	\cdots	
S/1491	Su*dus	H,909	2	$:$	141	10	n	1	-	101	-		W, mos	nos	19.100
S11761	M-nat	14.30	-	-	-	\cdots	34	1	1	104	-		10,05 ${ }^{1}$	491	ce, 18
shass	Tu*d-1	13,417	-	-	1.16	1.860	Ins	${ }^{\prime \prime}$	S	"	1		30.0.	1.14)	ce.030
SINTI	W.Aasoday	11.811	,	1	1811	1.831	454	\pm	11	"3	-		30.011	1.100	100
3/8079:	Amorot-i	10.184 $\mathbf{0 1 . 1 6 9}$;	1	1284	1.0.0	17	$\stackrel{\square}{0}$	3	ne	1		01.801	1.351	-1.812
	TGTAS.	8,430,628	131	13	21,343	$\frac{15,009}{402}$	0,300	$\underline{\text { ses }}$	$\underline{8.150}$	-7,769	115			11, $\frac{117}{10364}$	(1,705.97\% ${ }^{01.101}$

Table 4.4: Monthly Vehicle Counts by Vehicle Class (Example)

The New York City Department of City Planning (NYCDCP) provided both volume observations and survey data for the Manhattan Bridge, the Williamsburg Bridge, the Queens-Midtown Tunnel and the Queensboro Bridge. The counts were for 1989 and showed volumes by vehicle class and 15 -minute time period, westbound into Manhattan for a typical day (see Table 4.5). Vans and pickups are separated from passenger cars. Only commercial vans and pickups were counted in the vans and pickups category. Single unit trucks refers to vehicles without trailers that are two-axle-six-tire, three axle, etc. Combination trucks have trailers or semitrailers.

The survey data show trip origin, destination, purpose, frequency, etc. for trips crossing westbound into Manhattan across these same four facilities (see Figure 4.3). It is possible to differentiate among vehicle types based on the number of axies (question 4), the type of vehicle (question 3) and/or the type of trailer involved (question 5). For purposes of the case study investigation, we only made use of a portion of the information actually available. The focus was mainly on answers to questions $1,9,3$, and 4.

From the New York City Department of Transportation (NYCDOT) we obtained traffic counts for the Manhattan Bridge, the Williamsburg Bridge, and five bridges within Brookiyn - Hamilton Avenue, Union Street, Third Avenue, Stillwell Avenue and Crospey Avenue. The data are for 1988 and show counts by vehicle type and hour across typical weekdays (see, for example, Table 4.6). Trucks includes vehicles that have more than six tires and/or two axles, so vans and pick-up trucks counted as autos. For several intersections in northern Brooklyn, we also obtained percentage breakdowns by vehicle class: Myrtle

TIME	PASSEN. CARS	VANS + PICK-UPS	BUSES	SINGIE-U TRUCKS	COMBIN. TRUCKS	$\begin{gathered} \text { ALI } \\ \text { TRAFFIC } \end{gathered}$	VANS + TRUCKS
4-4:15 AM	79	12	0	11	11	113	34
4:15-4:30AM	54	13	0	14	10	91	37
4:30-4:45AM	114	25	0	22	5	166	52
4:45-5 AM	104	19	0	13	5	141	37
5-5:15 AM	128	24	0	28	13	193	65
5:15-5:30AM	169	26	0	31	11	237	68
5:30-5:45AM	210	39	0	21	18	288	78
5:45-6 AM	291	33	0	38	10	372	81
6-6:15 AM	385	67	0	45	18	515	130
6:15-6:30AM	374	79	1	50	25	529	154
6:30-6:45AM	354	107	5	50	13.	529	170
6:45-7 AM	348	113	2	44	19	526	176
7-7:15 AM	415	122	6	53	13	609	188
7:15-7:30AM	428	178	8	69	17	700	264
7:30-7:45AM	408	155	3	74	16	656	245
7:45-8 AM	452	177	9	85	15	738	277
8-8:15 AM	494	239	4	82	24	843	345
8:15-8:30AM	317	219	2	65	17	620	301
8:30-8:45AM	386	189	1	63	22	661	274
8:45-9 AM	360	233	2	93	24	712	350
9-9:15 AM	333	173	9	66	21	602	260
9:15-9:30AM	384	150	1	56	17	608	223
9:30-9:45AM	426	136	5	68	15	650	219
9:45-10 AM	484	181	8	67	15	755	263
10-10:15 AM	433	152	7	64	15	671	231
10:15-10:30	288	143	8	69	24	532	236
10:30-10:45	284	138	6	58	17	503	213
10:45-11 AM	349	138	4	67	15	573	220
11-11:15 AM	268	113	1	75	28	485	216
11:15-11:30	243	121	2	63	26	455	210
11:30-11:45	233	85	3	54	32	407	171
11:45-12 PM	197	114	4	70	29	414	213
	9,792	3,713	101	1,728	560	15,894	6,001

Survey Date: 10-12-89

Table 4.5: NYCDCP Classification Counts (Excerpt)

The Mew Yark city Desertment of City Plming is corducing e sindy to isprove gecoss-movemane within Wew Yort city. As part of this stuoy we are interested in obtaining intormsion an your
 ted the survey, Just deop the postace paid fom lim amt mileok. Tour memats wilt be sirietiy contionstial. Tour cooperacion is essential to the succest of this stuey mad men aporecisted.

1. Where dify you start your trip tway?

2. At what type of facility did you stars your srip sodar?
1/. 12 01/-1 Truck ierainal 021.1 Harencence 03/_1 Piggr-beck fac.

0 I_1 Dier 051.1 fecrer © lil otfie
Q. What is your ajor destination?

10. What eype of facility is this?

人<-2701|_1 Truck terminal $0<1$ _1 Pief 02I_1 varehouse ${ }^{05} \|_{-1} 1$, factory 031_1 Piggy-back fac.
l_I other (specity)
11. Wer of ten do you typically anke this trip?
3. that type of whicle are you driving?
2) ilet more shon once s doy

2!_l Daily
31_1 More than ance week
4.d Ueetly
I.I other (specity) \qquad
TME FOLLOUING OLESTIOUS PERTAIM TO TME MORTIO of rou trip uituin mamatian
12. How amy stops will you alke in Munation todoyzif ! ! 11 will not steo in mamatem

1576

$\begin{array}{ll}21.1 & 1 \text { or } 2 \\ 31,1 & 3 \text { or } 6 \\ 42 & 5 \text { or more }\end{array}$
5. What type of trailer to you have?

2) 3 axles 6 II 7 anles
$31 _1$ axies 71.18 antex
4_J 5 ales I_l other_

\qquad

21_1 Single Unic Iruck
31_1 Practer irailer
. Wiat comodity do you normally carry?
$17 \times 8011_{1} 1$ Food/Fure Preducts
021.1 0il/fuel 051.1 Paper
031.1 furniture 061_1 Apoarei

19 7. is yar whicle \quad ild Full

20
8. What is tive purpose of pour trip?

11」 Delivery only
21.1 Piekup only

3la, Piekep and Delivert
$44 \sqrt{\text { Insiatlationmaintenmace/kepair }}$

23-3at 3r-3L
15. When you leave yamatian vill your winiete be 34^{11} l Full $2 \mid$ l Partially full $3 l_{-} \mid$Emper
16. Hert you also interviened tody?
$38-11-y$ wo
2lel res. at this facility
3__ TES, at another facility

Figure 4.3: Survey Form, East River Truck Crossings Survey

24 HOUF VFPICUIAP VCIUMES
stillwell Avenue fridge
10/82

	Hour					S/8				Sum Totals
		Autcs	Truche	Pupes	Total	Autos	7 muchs	Puses	T0tal	
	12-1 am	69	1	0	70	56	3	0	59	129
	1-2 am	33	5	4	42	28	8	5	41	83
	2-3 am	37	3	0	40	29	3	0	32	72
	3-4 amm	16	3	3	22	23	0	1	24	16
	4- 5 an	20	2	4	26	20	3	6	29	55
	5-6 am	23	5	9	37	40	4	8	52	89
	6-7 am	30	4	20	54	78	2	13	93	147
	7-8am.	129	21	12	162	156	11	34	201	363
	8-9 am	184	34	25	243	207	16	27	250	493
	9-10 an	142	26	22	190	138	6.	13	212	402
	10-11 am	130	32	20	182	140	39	15	194	376
¢	11-12 $\mathrm{mm}^{\text {m }}$	148	41	日	197	161	30	10	201	398
\bigcirc	12-1 pm	195	71	13	279	195	34	14	243	522
	1-2 pm	170	63	19	252	211	61	18	290	542
	2-3 pm	210	58	25	293	197	82	23	302	595
	3-4 pm	223	35	30	288	264	43	17	324	612
	1-5 pm	223	36	30	289	230	37	17	284	573
	5-6 pm	217	15	17	249	227	25	14	266	515
	6-7 pr	158	8	17	183	151	7	14	172	355
	7-8 pm	127	7	3	137	124	6	2	132	269
	8-9 pm	122	6	1	129	133	2	2	137	266
	9-10 pm	112	5	1	118	122	${ }_{5}^{6}$	1	129	247
	10-11 pm	107	6	0	113	98	5	0	103	216
	11-12 pm	85	+	0	89	84	3	0	87	176
	rotale	2.910	491	203	3.604	3.112	491	254	3.857	7.541
	7-10 am	455	81	59	595	501	${ }^{88}$	74	663	1.258
	10-1 pm	473	144	41	658	496	103	59	638	1.296
	1-1 pm	603	156	74	P33	672	186	58	916	1.749
	4-7 pm	598	59	64	721	608	69	45	722	1,443

Table 4.6: NYCDOT Classification Counts (Example)

Avenue and Broadway, Atlantic Avenue and Utica Avenue, and Flatbush Avenue and Bergen Street (see Table 4.7). The same truck definition pertains.

Table 4.7: Classification Counts for Selected Locations in Brooklyn CLASSIEICATION COUNTS PERFORMED AT SELECTED

INTERSECTIONS IN NORTH BROOKLYN FOR THE BROOKLYN TRUCK ROUTE STUDY

In the late 1980 's Urbitran conducted a Brooklyn Truck Route Study. As Figure 4.4 shows, it provides 1985-1986 daytime (12-hour), 2-way counts of truck volumes at selected locations along Metropolitan Avenue, Grand Street, Flushing Avenue, Myrtle Avenue, Atlantic Avenue, Flatbush Avenue, Linden Boulevard, and Flatiands Avenue. The definition of a truck is the same as that used by NYCDOT - a vehicle with six or more tires and/or three or more axles.

The Port Authority of New York and New Jersey (PANYNJ) provided traffic flows for the Verrazano Narrows Bridge, an OD survey of easbound trips, breaking down

Figure 4.4: Truck Volumes from the Brooklyn Truck Route Study
destinations into upper and lower Brooklyn, Manhattan, and points north and east of the network, and counts of trucks by truck type into and out of air cargo facilities at JFK International Airport. The data for the Verrazano Narrows Bridge parallels that presented in Chapter 3 for the George Washington bridge - breakdowns of vehicles by vehicle class, both in terms of interviewed vehicles and totals. The data for truck trips near JFK airport shows truck and van arivals, by 15 -minute time period, coming into the terminal from the Van Wyck Expressway (see Table 4.8).

From New York State Department of Transportation (NYSDOTT) we obtained two major items. The first are factors for estimating traffic volumes by time period and truck class from AADT statistics, as was explained in Chapter 3 and presented in Tables 3.4 and 3.5. NYSDOT also provided AADTs for several locations on the Gowanus Expressway and on Linden Boulevard.

4.3 Creating the Constraints

Based on the data collected from the various sources, the next task is to create the OD, OT, and LV constraints from which the flow matrix estimates are developed. This section addresses that process and illustrates how several of the constraints are developed.

43.1 OD Constraints

Table 4.9 shows an excerpt from the 69 OD constraints pertaining to the AM period analysis. (There are 70 for the midday time period and 50 for the PM peak as can be found in Appendix B.) Eight of the constraints are derived from the 1984 PANYNJ OD

Table 4.8: JFK Air Cargo Study Data (Excerpt)

Table 4.9: OD Constraints Excerpt - AM Time Period

survey conducted at the Verrazano Bridge and the remaining 61 are derived from the East
River Truck Crossing Survey conducted by NYCDCP. Using the first line as an example, each constraint indicates the origin-destination locations to which the observation pertains (Verrazano Narrows Bridge, eastbound, to the southern portion of Brooklyn), a description of the observation's source (the 1984 Port Authority counts, for 2-and 3-axle trucks), the weights attached to small (1.0) and large (3.0) deviations from the observed value, the limits, below (30) and above (240) the observed value (of 239) at which the secondary, larger weights (3.0) take effect, the truck classes to which the observation pertains $0=$ no and $1=$ yes, and $T C 1=$ commercial vans, $T C 2=$ single unit trucks, and $T C 4=$ trucks with four or more axles), and the observed value (239). (TC3 is reserved for three-axle trucks when it is possible to distinguish between two and three axle trucks.)

To illustrate how the OD constraints are developed, let us use the East River Crossing Survey observations as an example. Recall from the discussion of data sources
that the New York City Department of City Planning (NYCDCP) had developed two sets of data during the survey process. The first was vehicle classification counts for the Williamsburg and Manhattan Bridges, the Midtown Tunnel and the Queensboro Bridge and the second was a dataset containing OD data from interviews conducted for trips traveling westbound into Manhattan actoss these facilities.

As was shown in Table 4.5, the classification data show inbound vehicle flows by vehicle class, each quarter-hour between 4:00 AM and 8:00 PM. The vehicles have been classified as passenger cars, vans and pickups, buses, single-unit trucks, and combination trucks. The vans and pickups category includes just commercial vehicles, not private vans, as the latter have been counted as passenger cars.

The origin-destination data contain 15 data items for each record, including origin, number of axdes, and vehicle type, as was shown in Figure 4.3. There are 3,067 records in the data file, 2,910 of which are complete enough to be used. Of these, 1,191 pertained to the Manhattan Bridge; 863 to the Queensboro Bridge; 722 to the Queens-Midtown Tunnel; and 291 to the Williamsburg Bridge. Origin and destination locations have been coded as "Port Authority Zones," which are based on ward boundaries within the City. Figure 4.5 shows the delineation of these zones within Brooklyn.

The first processing step is to aggregate the survey data by origin (Port Authority Zone) and destination (in this instance, the bridge or tunnel employed). Then the data can be divided into two groups, those trips destined to Lower Manhattan via the Manhattan or Williamsburg Bridges, and those destined to the Queensboro Bridge and the QueensMidtown tunnel. The latter trips exit the study network via the BQE .

Figure 4.5: Port Authority Zones in Brooklyn

Records for the Manhattan and Williamsburg Bridges must subsequently be processed to generate a distribution of trips from certain zones within the network (e.g., a set of zipcodes within Brookłyn) to Lower Manhattan (external Zone 100). Each cluster of zones within Brooklyn corresponds to a given Port Authority Zone. In similar fashion, the records for the Queensboro Bridge and Queens-Midtown Tunnel are used to generate a distribution of trips to external zone 103, the BQE.

Finally these trip distributions must be combined with the truck counts by time period and truck class to develop lower bounds for truck flows by truck class from clusters of zones within the study network to external zone 100 and 103. The breakdown of surveys among trip origins is used to estimate, within a given truck class, the percentage of trips coming from Port Authority Zones (and, implicitly, clusters of our own network zones) to a given bridge or tunnel. Next, these percentages are applied to the total truck flows by truck class, from the classification counts, to estimate total truck trips from a given origin to a given facility. Finally, the resulting volumes for the Williamsburg and Manhattan bridges are summed to create lower bounds on trips to Lower Manhattan; and the same process is followed for the Queensboro Bridge and the Queens-Midtown Tunnel to produce lower bounds for trips to the BQE.

4.3.2 OT Constraints

Table 4.10 shows the 6 OT constraints that have been developed for the AM period analysis. (There are six similar OT constraints for the midday and PM peak time periods, respectively, as can be found in Appendix B.) Two are from the 1991 TBTA toll counts

Table 4.10: OT Dataset Excerpt - AM Time Period

9 All Origins
2 All Origins
3 All Origins
4 All Origins
5 dFX - iinden Ave
6 dFX - Linden Ave

Verrazano Bridge	1991 TBTA toll counts WB
Verrazano Bridge	1991 TBTA toll counts WB
JFK - Linden Ave	1985 JFK Air Cargo Study
JFK - Linden Ave	1985 JFK Air Cargo Study
All Destinations	1985 JFK Air Cargo Study
All Destinations	1985 JFK Air Cargo Study

1.0	3.0	50	50	0	1	0	0
1.0	3.0	50	50	0	0	0	1
1.0	3.0	0	30	1	0	0	0
1.0	3.0	0	30	0	1	0	1
1.0	3.0	0	30	1	0	0	0
1.0	3.0	0	30	0	1	0	1

westbound on the Verrazano Narrows Bridge. The remaining four are derived from the 1985 JFK air cargo study conducted by the PANYNJ. Using the first line as an example, each constraint indicates the location from which the trips originate (all locations), the destination (the Verrazano Narrows Bridge, westbound), the observation's source (1991 TBTA toll count data), the weights attached to small (1.0) and large (3.0) deviations from the observed value, the limits, below (50) and above (50) the observed value (of 507) at which the secondary, larger weights (3.0) take effect, the truck classes to which the observation pertains ($0=$ no and $1=$ yes, and $\mathrm{TC1}=$ commercial vans, $\mathrm{TC} 2=$ single unit trucks, and TC4=trucks with four or more axles), and the observed value (507).

Using the data from the Verrazano Narrows bridge as an example, we can illustrate how the OT constraint data are prepared. Similar to Tables 4.3 and 4.4 presented earlier, the TBTA has collected toll plaza data for the Verrazano Narrows Bridge. Taking the data from the equivalent of Table 4.3 it is possible to estimate weekday trips by time period and direction during the day. In addition, by joining these data with the breakdowns of bridge crossings by vehicle type (the equivalent of Table 4.4) it is possible to estimate truck trips by vehicle type for each time period. Implicit assumptions involved in creating these estimates are 1) that the data are representative of a typical day for this facility and 2) the

APPENDIX A

OD Dataset, AM Time Period

∞	1 OH Bridge - EB
∞	2 On 8 ridge - EB
∞	3 ch Bridge - EB
∞	4 GW Bridge. EB
∞	5 cm 8ridge - EB
∞	6 cul Bridge - EB
∞	7 GH 8 ridge - EB
∞	8 Curidge - EB
∞	9 at Bridge - EB
∞	10 ar Eridge - EB
-	11 cts 8 ridge - EB
$\boldsymbol{\infty}$	12 cm 8 ridge - EB
∞	$13 \mathrm{kw} \mathrm{Bridge}$.
$\boldsymbol{\infty}$	$14 \mathrm{ow} \mathrm{Bridge.EB}$
∞	15 cm Bridge - EB
∞	16 cm Bridge - Es
∞	17 cu Bridge - EB
∞	$18 \mathrm{~cm} \mathrm{Bridge} \mathrm{-} \mathrm{Es}$
∞	19 cm 8 ridge - EB
∞	20 cm Bridge - EB
∞	21 CH 8ridge - EB
∞	22 cm gridge. EB
∞	23 ow Bridge. EB
∞	24 OW 8ridge - EB
∞	$25 \mathrm{ow} \mathrm{cridge} \mathrm{-} \mathrm{~EB}$
∞	26 G4 Bridge - EB
∞	27 GH 8ridge - EB
∞	28 cw Bridge - EB
∞	29 westchester - 187
∞	30 cw 8 ridge - EB
∞	31 Brorx - General
∞	32 N. Manhattan
∞	33 N. Manhattan
∞	34 Others
∞	35 others
∞	36 triborough 8 r.
∞	37 Triborough Br .
∞	38 Triborough Br .
∞	39 triborough sr.
∞	40 Westchester - 187
∞	41 menhatten - general
∞	$42 \mathrm{~cm} \mathrm{Bridge} \mathrm{-} \mathrm{~EB}$
∞	43 Bronx - General
∞	46 yestchester - 187
∞	45 ck 8ridge - EB
∞	46 Merhattan - general
∞	47 Broux - General

	PA Cmaty Surv - 283 axles	1.0	3.0	30	30	0	1	0	0	134
199	PA Comety Sury - 4+ axles	1.0	3.0	20	20	0	0	0	1	65
1991	PA Craty Surv - 263 axles	1.0	3.0	O	20	0	1	0	0	7
1991	PA Cadty Surv - $4+$ extes	1.0	3.0	0	20	0	0	0	1	6
1991	PA Condty Surv - 283 extes	1.0	3.0	0	20	0	9	0	0	18
1991	Pa Condty Surv - $4+$ axles	1.0	3.0	0	20	0	0	0	1	3
1991	PA Cndty Surv - 223 axtes	1.0	3.0	0	20	0	1	0	0	28
1991	PA Curdty Sury - 283 axtee	1.0	3.0	50	50	0	1	0	0	187
1991	PA Conty Surv - $4+$ axles	1.0	3.0	30	30	0	0	0	1	36
1991	PA Cmaty Surv - 263 axtes	1.0	3.0	20	20	0	1	0	0	81
1991	PA Candty Surv - $4+$ axles	1.0	3.0	30	30	0	0	0	1	101
199	PA Cadty Sury - 283 axtes	1.0	3.0	20	20	0	1	0	0	53
199	PA Cradty Surv - $4+$ axles	1.0	3.0	20	20	0	0	0	1	22
1991	PA Cmdty Surv - 2t3 axtes	1.0	3.0	20	20	0	1	0	0	18
1991	PA Gadty Surv - $4+$ axlea	1.0	3.0	0	20	0	0	0	1	10
1991	PA Cndty Surv - 263 axtes	1.0	3.0	0	20	0	1	0	0	18
1991	PA Condry Surv - $4+$ axtea	1.0	3.0	0	20	0	0	0	1	
1991	PA Cmatry Surv - 283 axte	1.0	3.0	0	20	0	1	0	0	
1991	PA Cadty Surv - 64 axtes	1.0	3.0	0	20	0	0	0	1	
1991	PA Cmdty Surv - 283 axtes	1.0	3.0	0	20	0	1	0	0	7
1991	PA Cudty Surv - 283 axtes	1.0	3.0	50	50	0	1	0	0	316
1991	PA Comdty Surv - $4+$ axles	1.0	3.0	50	50	0	0	0	1	689
1991	PA Cmdty Surv - 283 axles	1.0	3.0	30	30	0	1	0	0	119
1991	PA Cadty Surv - 44 axies	1.0	3.0	30	30	0	0	0	1	147
1991	PA Cmdty Surv - 263 exles	1.0	3.0	30	30	0	1	0	0	113
1991	PA Cmdty Surv - $4+$ axles	1.0	3.0	30	30	0	0	0	1	133
1991	PA Cudty Surv - 263 axles	1.0	3.0	50	50	0	1	0	0	327
1991	PA Cmaty Surv - 4t axles	1.0	3.0	50	50	0	0	0	1	481
1988	TBTA Trk Surv - $283,4+a x l e$	1.0	3.0	50	50	0	1	0	1	130
1988	teTA Trk Surv - 263,4+axle	1.0	3.0	50	50	0	1	0	1	180
1988	tBTA Trk Surv - $223,4+a x t e$	1.0	3.0	50	50	0	1	0	1	360
1988	TSTA Trk Surv - 283 axles	1.0	3.0	50	50	-	1	0	0	162
1988	TBTA Trk Surv - 4+ axles	1.0	3.0	50	50	0	0	0	1	10
1988	TBTA Trk Surv - 223 axles	1.0	3.0	50	50	0	1	0	0	694
1988	Tara Trk Surv - $4+$ axles	1.0	3.0	50	50	0	0	0	1	195
1988	tria trk Surv - 223 axlea	1.0	3.0	50	50	0	1	0	0	201
1988	TBTA Trk Surv - $6+$ axles	1.0	3.0	50	50	0	0	0	1	12
1988	tria Trk Surv - 283 axles	1.0	3.0	50	50	0	1	0	0	833
1988	tBTA Trk Surv - 44 axles	1.0	3.0	50	50	0	0	0	1	234
1988	TBTA Trk Surv - $283,4+3 \times 10$	1.0	3.0	30	50	0	1	0	1	130
1988	tera irk Surv - 223,4+axle	1.0	3.0	20	20	0	1	0	1	60
1988	T8TA Trk Surv - 223,4+axle	1.0	3.0	50	50	0	1	0	1	250
1988	TBTA Trk Surv - 263,4+axle	1.0	3.0	50	50	0	1	0	,	250
1988	TBTA Trk Surv - 223,6+axl	1.0	3.0	30	50	0	,	0	1	140
1988	tata trk Surv - 223,4+axle	1.0	3.0	50	50	0	,	0	,	390
1985	Trita trk Surv - 223,4+axle	1.0	3.0	20	30	0	1	0	1	60
198	TA Trk Surv - 283,4+	1.0	3.0	30	50		1	0	1	140

OD Dataset, Midday Time Period

∞	1 GU Bridge - EB
∞	2 GU Bridge - EB
∞	3 GN Bridge - EB
∞	4 GN Bridge - EB

Lower Manhattan Lower Manhattan
Manhattan 1420
Manhartan 1420

1991	PA Cndty Surv - 283 axles	1.0	3.0	30	30	0	1	0	0	86
1991	PA Cndty Surv - $4+$ axles	1.0	3.0	20	20	0	0	0	1	60
1991	PA Cndty Surv - 223 axles	1.0	3.0	0	20	0	1	0	0	6
1991 PA Cndty Surv - $4+$ axles	1.0	3.0	0	20	0	0	0	1	6	

∞	5 cu bridge - EB
∞	6 Gul Iridge - Es
0	7 CH Eridge - Es
∞	8 CW Bridge - EB
5	9 Cu Bridge - EB
∞	10 Cl Bridpe - Es
∞	11 cm Oridge - E8
∞	12 CH Bridge - EB
∞	13 ad Bridge - Es
∞	14 GN Bridge - EB
∞	15 cm Bridge - EB
∞	16 cm Bridge - EB
∞	$17 \mathrm{cw} \mathrm{Bridge} \mathrm{-} \mathrm{~EB}$
∞	18 cw Bridge - EB
∞	19 cl Bridge - EB
∞	$20 \mathrm{ow} \mathrm{Bridge} \mathrm{-} \mathrm{Es}$
∞	21 CW Bridge - EB
∞	$22 \mathrm{cw} \mathrm{Bridge} \mathrm{-} \mathrm{~EB}$
∞	23 OH Bridge - EB
∞	24 cH Bridge - EB
∞	25 GW Bridge - EB
∞	26 GW Bridge - EB
∞	$27 \mathrm{~cm} \mathrm{Bridge} \mathrm{-} \mathrm{Es}$
∞	28 cm Bridge - E8
∞	. 29 Westchester - 187
∞	30 cm 8ridge - Es
∞	31 Bronx - General
∞	32 M. Marhattan
∞	33 M. Marhattan
∞	34 Others
∞	35 others
∞	36 triborough 8 r.
∞	37 Triborough Br.
∞	38 triborough Er.
∞	39 Triborough Br.
∞	40 Westchester - 187
∞	41 Menhattan - general
∞	42 GW Bridge - EB
∞	43 Bronx - General
∞	44 Westehester - 187
∞	45 cd Bridge - EB
∞	46 Marhattan - general
∞	47 gronx - General

Marhattan 1462 Marhation 1442 Bronx - General Brorx - General
Brorx 2510
Bronx 2510
Bronx 2520
Brorx 2520
8ronx 2530
Bronx 2530
Bronx 2540
8 ronx 2540
Bronx 2550
Bronx 2550
Bronx 2560
Bronx 2560
Hestchester - ME
Hesteheszer - WE
Triborough Br. Triborough Br. Bronx-Whitestone Bronx-Whitestone Throgs Meek Br. Throgs Neek Br. Triborough Br. Triborough Br. Triborough Br.
Triborough Br. Triborough Br. Triborough Br. Triborough Br. W. Merhattan M. Manhattan Others Others Bronx-Whitestone Bronx-Whitestone Browx-whitestone Bronx-Whitestone Throgs Neek Br. Throgs Meck Br.
Throgs Neck Br.
Throgs Neck Br.

1991	PA Cmdty Surv - 283	1.0	3.0	0	20	0	9	0	0	19
1991	PA Cindty Surv - 4p axtes	1.0	3.0	0	20	0	0	0	1	3
1991 Pa	PA Cndty Surv-223 axtes	1.0	3.0	50	50	0	,	0	0	151
1991	PA Cratry surv - 4t axtes	1.0	3.0	30	30	0	0	0	1	91
1991	PA Condty Surv - 283 exles	1.0	3.0	20	20	0	1	0	0	115
1991 PA	PA Condty Sury . $4 \cdot$ axles	1.0	3.0	30	30	0	0	0	1	106
1991 Pa	PA Cmdty Surv - 223 axles	1.0	3.0	20	20	0	1	0	0	39
1991	PA Cmdty Surv - $4+$ extes	1.0	3.0	20	20	0	0	0	1	16
1991	PA Cmdry Surv - 283 axle	1.0	3.0	20	20	0	1	0	0	19
1991 Pa	PA Codty Sury - 4t axies	1.0	3.0	0	20	0	0	0	1	6
1991	PA Cadty Surv - 213 axles	1.0	3.0	0	20	0	1	0	0	12
1991 PA	PA Codty Sury - 4t extes	1.0	3.0	0	20	0	0	0	1	6
1991 PA	PA Cmaty Surv - 2133 axles	1.0	3.0	0	20	0	1	0	0	12
1991 Pa	PA Comdty Sury - 4t axies	1.0	3.0	0	20	0	0	0	1	13
1991 Pa	PA Cudty Surv - 283 axles	1.0	3.0	0	20	0	1	0	0	9
1991	Pa Cmdty Surv . 4t axte	1.0	3.0	0	20	0	0	0	1	3
1991	Pa Condty Surv - 283 axles	1.0	3.0	50	50	0	1	0	0	430
1991 Pa	PA Cudty Sury - $4+$ axlet	1.0	3.0	50	50	0	0	0	1	1120
1991 Pa	PA Codtry Sury - 213 axles	1.0	3.0	30	30	0	1	0	0	158
1991	PA Comtry Sury - 44 axlea	1.0	3.0	30	30	0	0	0	1	130
1991	PA Comdty Surv - 283 axie	1.0	3.0	30	30	0	1	0	0	117
1991 Pa	PA Cmdty Surv - 4t axles	1.0	3.0	30	30	0	0	0	1	97
1991 PA	PA Cmdty Surv - 263 axtes	1.0	3.0	- 50	50	0	1	0	0	220
1991 Pa	PA Cmatry Surv - 4+ axles	1.0	3.0	50	50	0	0	0	,	381
1988	T8TA Trk Surv - 2E3,4+exle	1.0	3.0	50	50	0	1	0	1	140
1988	ista irk surv - 2k3,6+axle	1.0	3.0	50	50	0	1	0		190
1988	TBTA Trk Surv - 263,6+axle	1.0	3.0	50	50	0	,	0	1	390
1988	TPTA Trk Sury - 223 axles	1.0	3.0	50	50	0		0	0	190
1988	TBTA Trk Surv - 4+ axles	1.0	3.0	50	50	0	0	0	1	12
1988	ibia irk Surv - 263 axles	1.0	3.0	50	50	0	1	0	0	743
1988	tBTA Trk Surv - 4t axles	1.0	3.0	50	50	0	0	0	1	209
1988	tria irk Surv - 283 axles	1.0	3.0	50	50	0	1	0	0	209
1988	tsTA Trk Surv - 4t extes	1.0	3.0	50	50	0	0	0	1	13
1988	tria irk Surv - 263 axles	1.0	3.0	50	50	0		0	0	825
1988	tata trk Surv - 4t axtes	1.0	3.0	50	50	0	0	0	1	232
1988	tria irk Surv - 263,6+exte	1.0	3.0	30	50	0	1	0	1	130
1988	TBTA Trk Surv - 283,6+axle	1.0	3.0	20	20	0	1	0	,	60
1988	TBTA irk Surv - 223,4+exle	1.0	3.0	50	50	0	1	0	1	260
1985	teta trk Surv - 223,4+axle	1.0	3.0	50	50	0	,	0	1	260
1988	teta trk Surv - 263,4+axle	1.0	3.0	30	50	0	,	0	,	180
1988	trita Trk Surv - 283,4+axle	1.0	3.0	50	50	0	,	0	1	500
1988	tata trk Surv - $283,4+\mathrm{max}$	1.0	3.0	20	30	0	,	0	1	80
1988	tria trk Surv - 223,4+	1.0	3.0	30	50	0	1	0	1	180

OD Dataset, PM Time Period

∞	1 cW Bridge - EB
∞	2 GU Eridge - EB
∞	3 EH Bridge - EB
∞	4 EN Eridge E E8
∞	5 CN Bridge - EB
∞	6 GU Bridge - EB
∞	7 GN Bridot - Es
∞	8 CW Eridge - Es
∞	9 EN Sridge - EB
∞	10 cm Eridge - EB
∞	11 cd Pridge - E8
∞	12 nd Bridge - E8
∞	$13 \mathrm{GN} \mathrm{Pridge} \mathrm{}$.
∞	14 OU Bridge - E8
∞	15 EN Bridge - EB
∞	16 CN Bridge - EB
∞	17 GW Bridge - EB
∞	18 GN Bridge - E8
∞	19 CU 8ridge - EB
∞	20 GN Bridge - EB
∞	21 cu Bridge - EB
∞	22 an Bridge - EB

Lower Marhattan
Lower Marhattan
Merharten 1420
Merhattan 1420
Marhattan 1430
Merhattan 1443
Bronx - General
Bronx - General
Bronx 2510
Bronx 2510
Bronx 2520
Brorx 2530
Brorx 2530
Bronx 2540
Bronx 2550
Bronx 2550
Bronx 2560
Hestehester - ME
Hestehester - ME
Triborough Br .
Triborough Br.
Bronx-Whitestone

1991	Cadty Surv - 243	1.0	3.0	30	30	0	1	0	0	
199	PA Comdy Surv - 4+ axies	1.0	3.0	20	20	0	0	0	1	22
1991	PA Candty Sury - 283 extes	1.0	3.0	0	20	0	1	0	0	
1991	PA Codty Surv - 4t axles	1.0	3.0	0	20	0	0	0	1	
1991	PA Codty Surv - 223 axles	1.0	3.0	0	20	0	1	0	0	
1991	PA Contry Surv - 4t axles	1.0	3.0	0	20	0	0	0	1	
1991	PA Codty surv - 223 axles	1.0	3.0	50	50	0	1	0	0	3
1991	PA Cadty Surv - 64 axtea	1.0	3.0	30	30	0	0	0	1	3
1991	PA Cmoty Surv - 283 axles	1.0	3.0	20	20	0	1	0	0	10
1991	PA Cadty Surv - 4t extes	1.0	3.0	30	30	0	0	0	1	14
1991	Pa cmaty Surv - 223 exles	1.0	3.0	20	20	0	1	0	0	
1991	Pa Cadty Surv - 223 axtes	1.0	3.0	20	20	0	1	0	0	
1991	Pa Condty Surv - 4+ axtes	1.0	3.0	0	20	0	0	0	1	
1991	Pa Condty Surv - 223 axles	1.0	3.0	0	20	0	1	0	0	
1991	PA Cadty Surv. 283 axles	1.0	3.0	0	20	0	,	0	0	
1991	Pa Condty Surv - 4+ extes	1.0	3.0	0	20	0	0	0	1	
1991	PA Cndty Surv. 223 axles	1.0	3.0	0	20	0	1	0	0	
1991	PA Cadry Surv - 223 axles	1.0	3.0	50	50	0	-	0	0	15
1991	PA Condty Surv. 4t axles	1.0	3.0	50	50	0	0	0	1	85
1991	PA Cadty Surv. 283 axles	1.0	3.0	30	30	0	-	0	0	
1991	PA Cndty Surv - 4t axles	1.0	3.0	30	30	0	0	0	1	
1991	PA Cmaty Surv. 283 axtes	1.0	3.0	30	30	0	1	0	0	

∞	23 WN Aridge - E8	Brorx-thitestone		pa car	Surv	es	1.0	3.0	30	30	0	0	0	1	
∞	26 OH Bridge - EB	Throge Heek 8 r .	1991	PA Cmat	Surv	223 axles	1.0	3.0	50	50	0	1	0	0	150
D	25 GH Iridge - EB	Throgs Neek Br.	1991	PA Cadty	Surv	4* axles	1.0	3.0	50	50	0	0	0	1	190
D	26 Westchester - 187	Triborough 8 Br .	1988	TBTA tri	Surv	223,4+axle	1.0	3.0	50	50	0	1	0	1	19
± 0	27 OH 8ridge - EB	Triborough Br.	1988	TBTA Trk	Surv	223, 4 +axle	1.0	3.0	50	50	0	1	0	1	250
∞	28 8ronx - General	Triborough Br.	1988	tBIA Trt	Surv	223,4+axle	1.0	3.0	50	50	0	1	0	1	510
∞	29 W .0 Manhatt	Triborough Br.	1988	TBTA Trk	Surv	223 exles	1.0	3.0	50	50	0	1	0	0	243
0	30 M . Manhattan	Iriborough Br.	1988	TBTA Trk	Surv	$4{ }^{4}$ axles	1.0	3.0	50	50	0	0	0	1	15
∞	31 Others	iriborough 8 r.	1988	TBTA Trt	Surv	223 axtes	1.0	3.0	50	50	0	1	0	0	977
∞	32 0th	Iriborough Br.	1988	TBTA Trk	Surv	4. axles	1.0	3.0	50	50	0	0	0	1	275
∞	33 Iriborough 8r.	W. Manhattan	1988	teta tri	Surv	263 axles	1.0	3.0	50	50	0	,	0	0	271
${ }^{0}$	36 Triborough Br.	W. Marhattan	1988	TETA Trk	surv	$4{ }^{4}$ axles	1.0	3.0	50	50	0	0	0	1	17
0	35 Triborough Br .	Others	1988	TBTA THE	Surv	213 extes	1.0	3.0	50	50	0	,	0	0	951
0	36 Triborough Br.	Others	1988	tita tri	Surv	${ }^{6+}$ axles	1.0	3.0	50	50	0	0	0	1	267
∞	37 westchester - 187	Brorx-Whitestone	1988	TBTA trk	Surv	223,4+axle	1.0	3.0	30	50	0	,	0	1	210
∞	38 Manhattan - general	Brorx-Whiteston	1988	TBTA Trk	Surv	223,4+axle	1.0	3.0	20	20	0	1	0	1	100
D	39 GW Oridge - EB	Bronx-Whitestone	1988	TBTA Trk	Surv	223,4+axte	1.0	3.0	50	50	0	1	0	1	400
50	40 8rorx - General	Brorx-Whitestone	1988	TBTA Trk	Surv	223,4+axle	1.0	3.0	50	50	0	,	-	1	400
∞	41 Westchester - 187	Throgs Meek Br.	1988	tBTA Trk	Surv	283,4+axt	1.0	3.0	30	50	0	1		1	270
∞	42 GW Bridge - EB	Throge Meek Br.	1988	tBTA Tr	Sury	223, 4 +axle	1.0	3.0	50	50	0	1	0	1	760
50	43 Manhattan - general	Throgs Meek Br.	1988	tBia Trk	Surv	223,4+axit	1.0	3.0	20	30	0	1	0	1	120
∞	44 Bronx - General	Throgs Neek 8 r .	1988	tBTA tri	Surv	283,4+axle	1.0	3.0	30	50	0	1	0	1	27

OT Dataset. AM Time Period

	All Origins All Origins
	All Origins
4	All Origins
	All origins
	All Origins
	Bronx-whitestone
	Bronx-Whitestone
	Throgs Neck Br.
10	Throgs Meek Br.
	All Origins
12	Hunt's Point
13	Zone 1-10458,63,68,
14	Zone 2-10466,67,69,
15	zone 3-10464,75
16	zone 6-10453
17	Zone 7-10457
18	Zone 8-10460
19	Zone 9-10462
20	Zone 10-10461
21	zone 11-10465
22	Zone 12-10452
23	Zone 13-10456
24	zone 14-10459
25	zone 15-10472
26	zone 16-10451
27	Zone 17-10455
28	Zore 19-10473
29	zone 20-10454
30	All origins
31	All origins
32	All Origins
33	All Origins
34	all Origins
35	All Origins
36	All Origins
37	All Origins
38	All Origins
39	all Origins
40	All Origins
41	All Origins
	All Origins

Bronx-Whitestone Bronx-Whitestone Bronx-Whitestone Throgs Meek Br. Throgs week Br. Throgs Meck Br. All Destinarions All Destinations All Destinations All Destinations Hunt's Point All Destinations ,71all Destinations all Destinations All Destinations All Destinations All Destinations All Destinations
All Destinations All Destinations Alt Destinations All Destinations
All Destinations All Destinations All Destinations All Destinations All Destinations Zone 1-10458,63,68,718ronx Truex Route Study
200ne 2-10466,67,69,708ronx Truck Route study
2one 3-10464,75 Bronx Truck Route Study
Zone 6-10453 Bronx Truck Route study
Zone 7. 10457 Bronx Truck Route Study
Zone 8-10460 Bronx Truck Route Study
Zone 9-10462 Bronx Truck Route Study
Zone 10-10461 Bronx Truck Route Study
2one 11-10465 Bronx Truck Route Study
$\begin{array}{ll}\text { Zone 12-10452 } & \text { Bronx iruck Route Study } \\ \text { Zone 13-10456 } & \text { Brorx iruck Route Study }\end{array}$
zone 14-10459 Bronx iruck Route Study
Zone 15-10472 Bronx iruck Route Study

App-A-3

π	43 All Origins	Zone 16. 10451	Brorx Truck route Study	1.0	3.0	150	150	0	1	0	1	750
or	46 All origins	Zone 17-10455	Bronx Truck Route Study	1.0	3.0	90	90	0	1	0	1	400
OT	45 All Origins	Zone 19-10473	Bronx Truck Route Study	1.0	3.0	130	130	0	1	0	1	710
J	46 All Origins	Zone 20-10454	Bronx Truck Route Study	1.0	3.0	90	90	0	1	0	1	400
J	47 All Origins	ME Thruway	WYS THRCUGKMAY DATA	1.0	3.0	37	37	0	1	0	0	618
ז	48 All Origins	ME Thruway	wYS throuchmay data	1.0	3.0	46	44	0	0	0	1	786
or	49 all origins	Hent's Point	Sense of Heaw Flows	1.0	3.0	0	200	0	0	0	1	0
or	50 Hent's Point	All destinations	Sense of Heal flows	1.0	3.0	0	200	0	0	0	1	0
ग	51 All Origins	N. Manhattan	Intuition sbout truek flows	1.0	3.0	0	200	0	1	0	1	0
כ	52 N. Marhattan	All Destinations	Intuition about truck flows	1.0	3.0	0	200	0	1	0	1	0

OT Dataset Midday Time Period

LV Dataset AM Time Period

WV	1	48831
LV	2	48831
LV	3	-48831
LV	4	-48831
LV	5	10520
WV	6	10520
LV	7	-10520
WV	8	-10520
LV	17	10180
LV	18	10180

arorx Cnty traffic count - vans	1.0	3.0	80	80	1	0	0		780
Bronx Cnty traffic count-others	1.0	3.0	60	60	0	1	0	1	550
Bronx Cnty eraffic count - vans	1.0	3.0	90	90	1	0	0	0	880
Brorx Cnty traffic count-others	1.0	3.0	60	60	0	1	0	1	620
8ronx Cnty traffic count - vans	1.0	3.0	90	90	1	0	0	0	880
gronx Cnty traffic count-others	1.0	3.0	60	60	0	1	0	1	620
Bronx Cnty traffic count - vans	1.0	3.0	100	100	1		0	0	950
Bronx Cnty traffic eount-others	1.0	3.0	70	70	0	1	0	1	670
Bronx Cnty eraffie count - vans	9.0	3.0	100	100	1	0	0	0	950
Srorx Cnty traffic count-others	1.0	3.0	70	70	0	1	0	1	670
Bronx Cnty traffic count - vans	1.0	3.0	110	110	1	0	0	0	1080
Bronx Cnty traffic count-others	1.0	3.0	80	80	0	1	0	1	760
Bronx Cnty traffic count - vens	1.0	3.0	110	110	1	0	0	0	1080
Bronx Cnty traffic count-other	1.0	3.0	80	80	0	1	0	1	760
Bronx Cnty traffic count - vans	1.0	3.0	90	90	1	0	0	0	890
Bronx Cnty traffic count-others	1.0	3.0	60	60	0	1	0	1	630
8romx Cnty traffic count - va	1.0	3.0	90	90	1	0	-	0	890
8ronx Cnty traffic count-oth	1.0	3.0	60	60	0		0	1	630
Bronx Cnty traffic coun	1.0	3.0	50	50	1	0	0	0	550
Bronx Cnty traffic cound	1.0	3.0	340	340	0	1	0	1	3390
Bronx Cnty traffic coun	1.0	3.0	80	80	1	0	0	,	750
Bronx Cnty traffic count	1.0	3.0	220	220	0	1	0	1	2170
Bronx Cnty traffic co	1.0	3.0	30	30	1	1	0	0	120
Bronx Cnty traffic coun	1.0	3.0	30	30	0	-	0	1	140
Bronx Cnty traffic coum	1.0	3.0	30	30	1	0	0	0	130
Bronx Cnty traffic coun	1.0	3.0	30	30	0	1	0	1	130
Bronx Cnty traffic coun	1.0	3.0	30	30	1	1	0	0	190
Bronx Cnty traffic coun	1.0	3.0	30	30	0	1	0	1	140
Bronx Cnty traffic co	1.0	3.0	60	60	1	0	0	0	550
Bronx Cnty traffic cen	1.0	3.0	30	30	0	1	0	1	280
Browx city t	1.0	3.0	30	30	1	0	0	0	140
Bronx Conty t	1.0	3.0	30	30	0	1	0	1	160
Brorx caty traffic coun	1.0	3.0	30	30	1	0	0	0	320
Bronx City	1.0	3.0	30	30	0	1	-	1	240
Bronx Cnty traffic coun	1.0	3.0	30	30	1	0	0	0	210
Bronx Cnty traff	1.0	3.0	30	30	0	1	0	1	190
Bronx Cnty traffic	1.0	3.0	30	30	1	0	0	0	40
Bronk Cnty traftic coun	1.0	3.0	30	30	0	1	-	1	150
Bromx Caty tr	1.0	3.0	30	30	1	0	0	0	280
Bronx Cnty tr	1.0	3.0	30	30	0	1	0	1	200
Bronx enty	1.0	3.0	30	30	1	0	0	0	80
Bronx Centy	1.0	3.0	30	30	0	1	0	1	120
Brorx Cnty t	1.0	3.0	70	70	1	0	0	0	670
Bronx Cnty tr	1.0	3.0	70	70	0	1	0	0	700
Bronx Conty t	1.0	3.0	170	170	1	0	0	0	1680
Brorx Cnty tr	1.0	3.0	190	190	0	1	0	0	1890
Brorx Cnty traffic co	1.0	3.0	30	30	1	0	0	0	50
Bronx cinty	1.0	3.0	30	30	0	1	0	1	130
Bromx enty traffic count - ven	1.0	3.0	30	30	1	0	0	0	170
Bronx Cnty traftic count-other	1.0	3.0	30	30	0	0	0	1	100
CBE grnd ents-Beach/Taylor EB	1.0	3.0	50	50	$?$	0	0	0	510
CBE grnd ents-Beach/Taytor EB	1.0	3.0	60	60	0	-	0	0	550
CBE grnd cnts-Beach/Taylor EB	1.0	3.0	90	90	0	0	0	1	910
CBE grnd ents-8each/Taylor ws	1.0	3.0	40	40	1	0	0	0	440
and ents-Beach/Taylor we	1.0	3.0	30	30	0	-	0	0	160
Ind ents-Besch/Taylor we	1.0	3.0	30	30	0	0	0	1	190
ts Point Stdy -8ruckner EE	1.0	3.0	70	70	1	0	0	0	670
ts Point stoy -gruckner EB	1.0	3.0	60	60	0	-	0	0	560
ts Point stoy-8ruckner EB	1.0	3.0	40	40	0	0	-	1	370
ts Point stdy -8ruckner ws	1.0	3.0	90	90		-	0	0	930
Hunts point stdy -bruckner ws	1.0	3.0	60	60	0			0	610
Munts Point stdy -gruckner we	1.0	3.0	30	30	-	0	0	1	180
Point stay-sheridan MB	1.0	3.0	30	30	1	0	0	0	50
Point stay-Sheridan WB	1.0	3.0	30	30	0	1	0	0	150
Hunts Point Stay-Sheridan NB	1.0	3.0	30	30	0	0	0	1	60
Hunts point stdy-Sheridan SB	1.0	3.0	40	40	1	0	0	0	440
Hunts Point stdy-Sheridan 58	1.0	3.0	30	30	0	1	0	0	230
Hunts Point stdy-Sheridan 58	1.0	3.0	30	30	0	0	0	1	160
WYSOOT 51 EB -cBE Extens	1.0	3.0	30	30	1	0	0	0	40

v	162	11962
LV	163	11962
LV	164	-11962
V	165	-11962
v	166	11890
v	167	11890
LV	168	11890
LV	169	-11890
v	170	-11890
v	171	-11890
LV	178	11900
LV	179	11900
v	180	11900
. V	181	- 11900
. V	182	-11900
LV	183	- 11900

Wysoot si es -cBE Extension WYsoot si es -cbe Extension MYsoot si we cee Extension WYSOOT 51 we -cbe Extension HYspoi 51 EB - Jerome/Nebster WYSOOT S1 EB - Jerome/Webater WYSDOT S1 ES - Jerome/Webeter MYspoi Si we - Jerame/Webeter WYspot 51 we - Jerame/Ucbeter HYS0OT 51 WB -Jerome/Webster MYSDOT S1 EB -Crotona/Sheridan WYSDOT S1 EB -Crotorna/Sheridan MYSDOT 51 EB-Crotona/Sheridan WYSDOT S1 LS -Crotona/Sheridan MYSDOT Si ve-Crotone/Sheridan MYSDOT $\$ 1$ tie -Crotona/Sheridan

1.0	3.0	30	30
1.0	3.0	30	30
1.0	3.0	30	30
1.0	3.0	30	30
1.0	3.0	70	70
1.0	3.0	110	110
1.0	3.0	200	200
1.0	3.0	50	50
1.0	3.0	80	80
1.0	3.0	70	70
1.0	3.0	70	70
1.0	3.0	100	100
1.0	3.0	200	200
1.0	3.0	40	40
1.0	3.0	70	70
1.0	3.0	70	70

0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0

1	0
0	0
1	0
0	0
0	0
1	0
0	0
0	0
1	0
0	0
0	0
1	0
0	0
0	0
1	0
0	0

0
1
0
1
0
0
1
0
0
1
0
0
1
0
0

LV Dataset, Midday Time Period

LV	148831
.V	248831
.v	$3-48831$
.V	4-48831
LV	510520
LV	610520
.v	7-10520
.V	8 -10520
LV	1710180
LV	1810180
-V	$19 \cdot 10180$
.V	20-10180
-V	2110190
LV	2210190
LV	$23-10190$
LV	24.10190
LV	2510240
LV	2610240
LV	$27 \cdot 10240$
LV	28-10240
LV	2910930
LV	3010930
LV	$31-10930$
LV	$32-10930$
LV	3318900
LV	3418900
LV	$35-18900$
LV	$36-18900$
LV	9711850
tV	9811850
LV	$99-11860$
เV	$100 \cdot 11860$
LV	1018820
LV	1028820
LV	103-8820
LV	106-8820
LV	10548590
LV	10648590
LV	$107-48590$
Lv	108.48590
LV	10949560
LV	11049560
LV	$111-49560$
LV	112-49560
LV	11350138
LV	11450131
LV	115 -50131
เV	116 -50131
LV	117103

290
210
290
210
280
190
280
190
1260
880
1260
880
1420
990
1420
990
1540
1080
1540
1080
1750
1220
1750
1220
1450
1010
1450
1010
400
3000
970
3780
200
150
100
150
290
250
390
230
290
290
260
130
180
240
330
180
290

Lv	11810380
LV	119 -10380
tv	120-10380
LV	1219810
LV	1229810
LV	1239312
LV	1269312
LV	$125-49610$
เV	$126-4 \% 10$
เV	$1274 \% 10$
LV	12849610
bV	14311930
LV	14611930
LV	16511930
LV	146-11930
LV	147-11950
LV	148-11930
LV	14910850
LV	15010850
LV	15110850
LV	152-10850
LV	153-10850
LV	154-10850
LV	15511020
LV	15611020
LV.	15711020
LV	158-11020
LV	159-11020
เV	160-11020
LV	16911962
LV	16211962
LV	16311962
LV	164-11962
LV	165-11962
LV	16611890
LV	16711890
LV	16811890
LV	169-11890
LV	170-11890
เV	171-11890
LV	17811900
LV	17911900
LV	18011900
LV	181-11900
LV	182-11900
เV	183-11900

เV	27-10240
LV	28-10240
	2910930
\checkmark	3010930
\checkmark	31.10930
LV	32-10930
LV	3318900
v	3418900
v	35-18900
LV	$36-18900$
LV	9711860
v	9811860
\checkmark	99.11860
\checkmark	100-11860
${ }^{6}$	1018820
LV	1028820
v	103-8820
V	106-8820
LV	10548590
LV	10648590
	107-48590
.V	108-48590
.V	10949560
LY	11049560
เV	$111-49560$
. V	$112-49560$
.V	11350131
LV	11450131
LV	115 -50131
.V	116 -50131
.V	11710380
. V	11810380
LV	119 -10380
LV	120-10380
.V	1219810
-v	1229810
LV	1239312
LV	1249312
: V	125.49610
:V	126.49610
-v	12749610
เv	12849610
LV	14311930
LV	14411930
LV	14511930
เv	146 -11930
เV	147-11930
เv	148-11930
เV	14910850
เv	15010850
เV	15110850
LV	152-10850
เV	153-10850
เV	154-10850
เv	15511020
LV	15611020
LV	15711020
LV	158-11020
LV	159-11020
LV	160-11020
LV	16111962
LV	16211962
LV	16311962
LV	166-11962
LV	165-11962
LV	16611880
LV	16711890
LV	16811890
LV	169-19890

Bronx Cnty t	. 1	3.0	170	170	1	0	0	0	1650
Bronx Cnty traffic count-others	1.0	3.0	120	120	0	1		1	1160
Branx Cnty traffie count - vans	1.0	3.0	190	190	1		0	0	1870
Bronx Cnty traffic count-others	1.0	3.0	130	130	0	1	0	1	1310
Brorx Cnty traffic count - vans	1.0	3.0	190	190	1	0	0	0	1870
Bronx Cnty traffic count-others	1.0	3.0	130	130	0	1	0	1	1310
Bronx Cnty traffic count - vans	1.0	3.0	160	160		0	0	0	1550
Bronx Cnty traffic count-others	1.0	3.0	110	110	0	1	0	1	1080
Aronx Cnty traffic count - vans	1.0	3.0	160	160	1	0	0	0	1550
Brony Cnty traffic count-others	1.0	3.0	110	110	0	1	0	,	1080
Bronx Cnty traffic count - vans	1.0	3.0	50	50	1	0	0	0	500
Bronx Cnty traffic count-others	1.0	3.0	220	220	0	1	0	1	2180
Bronx Cnty traffic count - ven	1.0	3.0	70	70	1	0	0	0	740
Bronx Cnty traffic count-other	1.0	3.0	330	330	0	1	0	1	3310
Brorx Cnty traffic count - ver	1.0	3.0	30	30	1	0	0	0	290
Bronx Cnty traffic count-other	1.0	3.0	30	30	0	,	0	1	70
Bronx Cnty traffic count - van	1.0	3.0	30	30	1	0	0	0	80
Bronx Cnty traffic count-other	1.0	3.0	30	30	0	1	0	1	100
Bronx Cnty traffic count - vans	1.0	3.0	40	40	1	0	0	0	420
Bronx Cnty traffic count-others	1.0	3.0	30	30	0	1	0	1	210
Bronx Cnty traffic count - ven	1.0	3.0	30	30	1	0	0	0	290
Bronx Cnty traffic count-others	1.0	3.0	30	30	0	,	0	1	120
Bronx Cnty traffic count - va	1.0	3.0	30	30		0	0	0	280
Bronx Cnty traffic count-other	1.0	3.0	30	30	0		0	1	260
Bronx Cnty traffic count - van	1.0	3.0	30	30	1	0	0	0	130
Bronx Cnty traffic count-other	1.0	3.0	30	30	0	9	0	1	80
Bronx Cnty traffic count - va	1.0	3.0	30	30	1	0	0	0	210
Bronx Cnty traffic count-other	1.0	3.0	30	30	0	1	0	1	160
Bronx Cnty traffic count - van	1.0	3.0	30	30	1	0	0	0	290
Bronx Cnty traffic count-others	1.0	3.0	30	30	0	1	0	1	80
Bronx Cnty traffic ce	1.0	3.0	40	40	1	0	0	0	420
Bronx Enty traffic count-other	1.0	3.0	30	30	0	1	0	1	150
Bronx Cnty traffic count - van	1.0	3.0	30	30	1	0	0	0	130
Bronx Cnty traffic count-other	1.0	3.0	30	30	0	1	0	1	170
Bronx Cnty traffic coun	1.0	3.0	150	150	1	0	0	0	1530
Brorx Cnty traffic count-other	1.0	3.0	90	90	0	1	0	0	930
Bronx Cnty traffic cou	1.0	3.0	50	50	1	0	0	0	540
Bronx Cnty traffic count-other	1.0	3.0	50	50	0	1	0	0	540
Bronx Cnty traffic cow	1.0	3.0	30	30	1	0	0	0	150
Bronx Cnty traffic co	1.0	3.0	30	30	0	1	0	1	190
Bronx Cnty traffic count - V	1.0	3.0	30	30	1	0	0	0	60
Bronx Cnty traffic count-other	1.0	3.0	30	30	0	1	0	1	30
CBE grnd ents-Beach/Taylor EB	1.0	3.0	40	40	1	0	0	0	410
CBE grnd cnts-Beach/Taylor EB	1.0	3.0	40	40	0	1	0	0	400
CAE grnd cnts-Beech/Taylor E8	1.0	3.0	100	100	0	0	0	1	1000
C8E grnd cnts-Beech/Taylor Le	1.0	3.0	40	40	1	0	0	0	430
CEE grnd ents-beach/Taylor we	9.0	3.0	50	50	0	1	0	0	500
CEE grnd ents-Beach/Taylor WB	1.0	3.0	120	120	0	0	0	1	1200
munts point stdy -bruckner Es	1.0	3.0	120	120	1	0	0	0	1170
Wunts Point Stdy -Bruckner Es	1.0	3.0	40	40	0	1	0	0	420
munts Point stdy -8ruckner EB	1.0	3.0	30	30	0	0	0	1	160
Munts Point Stdy -8ruckner WB	1.0	3.0	80	80	1	0	0	0	750
Munts Point Stdy -Bruckner We	9.0	3.0	70	70	0	1	0	0	650
Munts Point Stdy -Bruckner W8	1.0	3.0	30	30	0	0	0	1	170
Hunts Point stey -Sheriden MB	9.0	3.0	30	30	1	0	0	0	330
Hunts Point Stdy -Sheridan ws	9.0	3.0	30	30	0	1	0	0	100
Munts Point Stdy -Sheriden M8	1.0	3.0	30	30	0	0	0	1	80
Nunts Point stdy -sheridan SB	1.0	3.0	30	30	1	0	0	0	210
Hunts Point stdy -Sheridan S8	1.0	3.0	30	30	0	1	0	0	80
Hunts Point stdy -Sheridan 58	1.0	3.0	30	30	0	0	0	1	60
WYSDOT \$1 E8-CBE Extension	1.0	3.0	30	30	1	0	0	0	70
MYSOOT S1 EE -C8E Extension	1.0	3.0	30	30	0	1	0	0	340
WYSDOT S1 Es - CAE Extension	1.0	3.0	40	40	0	0	0	1	380
MYSDOT S1 WB -CBE Extension	1.0	3.0	30	30	0	1	0	0	250
WYSDOT S1 WB -CBE Extension	1.0	3.0	30	30	0	0	0	1	280
WYSDOT S1 EB-Jerome/webster	1.0	3.0	110	110	1	0	0	0	1060
WYSDOT S1 EB - Jerame/Webster	1.0	3.0	90	90	0	1	0	0	860
WYSDOT S1 EB-Jerome/Mebster	1.0	3.0	200	200	0	0	0	1	710
wrspor 51 We-Jerome/Webster	1.0	3.0	90	90	I	0	0	0	940

	170	-11890
\cdot	171	-11890
v	178	11900
j	179	11900
	180	11900
v	181	-11900
v	182	-11900
v	183	-11900

OT	\$1 W8	- Jerome/Webs ter	1.0	3.0	9	90	0	1	0	0	910
WYs00t	\$1 W8	- Jerome/Lebe	1.0	3.0	150	150	0	0	0	1	1530
WYSDOT	S1 E8	- Crotona/Sheriden	1.0	3.0	100	100	1	0	0	0	990
MYS00\%	S1 EB	- Crotona/Sheriden	1.0	3.0	80	80	0	1	0	0	810
MYsoot	S1 Eb	- Crotona/Sheridan	1.0	3.0	200	200	0	0	0	1	670
MYS00T	S1 48	- Crotora/Sheridan	1.0	3.0	90	90	1	0	0	0	880
MYS00t	St we	- Crotona/Sheridan	1.0	3.0	90	90	0	1	0	0	850
WYSOOT		- Crotoma/Sheridan	1.0	3.0	140	140	0	0	0	1	1440

INPUT DATASETS FOR THE BROOKLYN CASE STUDY

OD Dataset, AM Time Period

1984 PA counts - 283 axles	1.0	3.0	30	240	0	1	0	0	,
1984 PA counts - >3 axtes	1.0	3.0	33	340	0	0	0	1	32
1984 PA counts - 283 axtes	1.0	3.0	30	160	0	1	0	0	157
1984 PA counts - >3 axles	1.0	3.0	30	220	0	0	0	1	217
1984 PA counts - 283 axles	1.0	3.0	30	220	0	1	0	0	218
1984 PA counts - 23 axles	1.0	3.0	30	310	0	0	0	1	303
1984 PA counts - 283 axles	1.0	3.0	30	50	0	1	0	0	42
1984 PA counts - 23 axles	1.0	3.0	30	60	0	0	0	1	58
1989 E. River Crossings - vans	1.0	3.0	156	1560	1	0	0	0	1556
1989 E. Rvr Cross - 283 axles	1.0	3.0	60	600	0	1	0	0	625
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	140	0	0	0	1	30
1989 E. River Crossings - vans	1.0	3.0	30	110	1	0	0	0	04
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	120	0	1	0	0	125
1989 E. Rvr Cross - 23 axles	1.0	3.0	30	90	0	0	0	1	89
1989 E. River Crossings - vans	1.0	3.0	30	110	1	0	0	0	04
1989 E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	14
1989 E. River Crossings - vans	1.0	3.0	30	40	1	0	0	0	35
1989 E. River Crossings - vans	1.0	3.0	30	40	1	0	0	0	35
1989 E. River Crossings - vans	1.0	3.0	30	70	1	0	0	0	69
1989 E. Ryr Cross - 283 axles	1.0	3.0	30	30	0	1	0	0	28
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	30	0	0	0	1	7
1989 E. River Crossings - vans	1.0	3.0	30	40	1	-	0	0	35
1989 E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	28
1989 E. River Crossings - vans	1.0	3.0	30	70	,	0	0	0	69
1989 E. Rur Cross - 283 axles	1.0	3.0	30	60	0	1	0	0	70
1989 E. River Crossings - vans	1.0	3.0	30	210	1	0	0	0	208
1989 E. Rur Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	14
1989 E. River Crossings - vans	1.0	3.0	30	40	,	0	0	0	35
1989 E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	28
1989 E. River Crossings - vans	1.0	3.0	30	250	1	0	0	0	242
1989 E. Rvr Cross - 2 axles	1.0	3.0	30	50	0	1	0	0	42
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	30	0	0	0	1	7
1989 E. River Crossings - vans	1.0	3.0	48	490	1	0	0	0	484
1989 E. Rvr Cross - 223 exles	1.0	3.0	30	160	0	1		0	167
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	50	0	0	0	1	48
1989 E. River Crossings - vans	1.0	3.0	55	560	1	0	0	0	553
1989 E. Rur Cross - 283 axles	1.0	3.0	30	190	0	1	0	0	194
1989 E. Rvr Cross - 33 axles	1.0	3.0	30	30	0	0	0	1	21
1989 E. River Crossings - vans	1.0	3.0	30	180	1	0	0	0	173
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	120	0	1	0	0	139
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	30	-	0	0	1	21
1989 E. River Crossings - vans	1.0	3.0	35	350	1	0	0	0	346
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	260	0	1	0	0	306
1989 E. Rvr Cross - >3 oxles	1.0	3.0	30	40	0	0	0	1	34
1989 E. River Crossings - vans	1.0	3.0	35	350	1	-	0	0	346
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	100	0	1	0	0	139
1989 E. Rvr Cross - 73 axles	1.0	3.0	30	30	0	0	0	1	7
1989 E. River Crossings - vans	1.0	3.0	30	70	1	0	-	0	69
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	70	0	1	0	0	83
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	30	0	0	0	1	21
1989 E. River Crossings - vans	1.0	3.0	45	460	1	0	0	0	450
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	190	0	1	0	0	208
1989 E. Rvr Cross - >3 axles	1.0	3.0	30	60	0	0	0	1	55
1989 E. River Crossings - vans	1.0	3.0	49	420	1	0	0	0	415
$1989 \mathrm{E} . \mathrm{Rvr}$ Cross - 283 axles	1.0	3.0	30	280	0	1	0	0	306

App-B-1

0	68	Zone 4840
0	69	Verrazano Bridge
∞	70	Zone 4710
0	72	Zone 4720
0	73	Zone 4720
0	74	Zone 4730
∞	75	Zone 4740
∞	76	Zone 4740
D	77	Zone 4800
0	78	Zone 4810
D	79	Zone 4810
∞	80	Zone 4820
D	81	Zone 4840
D	82	Zone 4840

Lower Manhattan
BOE

1989 E. Rvr Cross - >3 axtes	1.0	3.0	30	70	0	0	0	1
1989 E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0
1989 E. Rvr Cross - 283 axles	1.0	3.0	30	30	0	1	0	0
1989 E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0
1989 E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0
1989 E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0
1989 E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0
1989 E. Rvr Cross - 3 axles	1.0	3.0	30	30	0	1	0	0
1989 E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0
1989 E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0
1989 E. Rvr Cross - 2 axtes	1.0	3.0	30	30	0	1	0	0
1989 E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0
1989 E. River Crossings - vans	1.0	3.0	30	220	1	0	0	0
1989 E. Ryr Cross - 2 axles	1.0	3.0	30	150	0	1	0	0

OD Dataset, Midday Time Period

∞

	PA counts - 283 axles	1.0	3.0	30	270	0	1	0	0	269
1984	PA counts - >3 oxles	1.0	3.0	37	380	0	0	0	1	373
1984	PA counts - 283 axtes	1.0	3.0	30	180	0	1	0	0	176
1984	PA counts - 33 axles	1.0	3.0	30	250	0		0	1	244
1984	PA counts - 283 axles	1.0	3.0	30	250		1	0	0	246
1984	PA counts - >3 axles	1.0	3.0	36	350	-		0	1	341
1984	PA counts - 283 axtes	1.0	3.0	30	50	0	1	0	0	47
84	PA counts - >3 axles	1.0	3.0	30	70	0	0	0	1	65
989	E. River Crossings - vans	1.0	3.0	72	730	1	0	0	0	721
89	E. Rvr Cross - 223 axles	1.0	3.0	71	710	0	1	0	0	795
89	E. Rur Cross - 23 axles	1.0	3.0	30	290	0	0	0	1	288
1989	E. River Crossings - vans	1.0	3.0	33	330	1	0	0	0	328
1989	E. Rvr Cross - 2 axies	1.0	3.0	30	30	0	1	0	0	29
1989	E. Rvr Cross - 73 axles	1.0	3.0	30	60	0	0	0	1	59
1989	E. River Crossings - vans	1.0	3.0	30	30	1	0	0	0	22
1989	E. River Crossings - vans	1.0	3.0	30	90	1	0	0	0	87
1989	E. Rur Cross - 2 axles	1.0	3.0	30	30	0	9	0	0	10
1989	E. River Crossings - vans	1.0	3.0	30	50	1	0	0	0	44
1989	E. Rur Cross - 2 axtes	1.0	3.0	30	30	0	1	0	0	19
1989	E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	10
1989	E. River Crossings - vans	1.0	3.0	30	70	1	0	0	0	66
1989	E. Rvr Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	10
1989	E. River Crossings - vans	1.0	3.0	30	90	1	0	0	0	87
1989	E. Rvr Cross - 283 axles	1.0	3.0	30	30	0	1	0	0	39
1989	E. Rur Cross - 33 axles	1.0	3.0	30	30	0	0	0	1	8
1989	E. River Crossings - vans	1.0	3.0	30	70	1	0	0	0	66
1989	E. Rur Cross - 2 axles	1.0	3.0	30	30	0	1	0	0	29
1989	E. River Crossings - vans	1.0	3.0	30	140	1	0	0	0	131
1989	E. Rvr Cross - 283 axles	1.0	3.0	30	30	0	1	0	0	29
1989	E. River Crossings - vans	1.0	3.0	41	420	1	0	0	0	415
1989	E. Rvr Cross - 283 axles	1.0	3.0	30	100	0	1	0	0	116
1989	E. Rivr Cross - 33 axles	1.0	3.0	30	40	0	0	0	1	34
1989	E. River Crossings - vans	1.0	3.0	35	350	1	0	0	0	349
1989	E. Rvr Cross - 28.3 axles	1.0	3.0	30	110	0	1	0	0	117
1989	E. Rur Cross - 23 axles	1.0	3.0	30	60	0		0	1	50
1989	E. River Crossings - vans	1.0	3.0	30	140	1	0	0	0	131
1989	E. Rvr Cross - 2 axles	1.0	3.0	30	60	0	1	0	0	58
1989	E. Rvr Cross - >3 axles	1.0	3.0	30	30	0	-	0	1	8
1989	E. River Crossings - vans	1.0	3.0	30	200	1	0	0	0	197
1989	E. Rvr Cross - 283 axles	1.0	3.0	30	170	0	1	0	0	194
1989	E. Rvr Cross - 33 axles	1.0	3.0	30	120	0	0	0	1	118
1989	E. River Crossings - vans	1.0	3.0	30	250	1	0	0	0	40
1989	E. Ryr Cross - 2 axles	1.0	3.0	30	80	0	1	0	0	8
1989	E. Rur Cross - 33 axles	1.0	3.0	30	30	0	0	0	1	25
1989	E. River Crossings - vans	1.0	3.0	30	250	1	0	0	0	240
1989	E. Rur Cross - 283 axles	9.0	3.0	30	50	0	1	0	0	59
1989	E. Rur Cross - 33 axtes	1.0	3.0	30	30	0	0	0	1	17
1989	E. River Crossings - vans	1.0	3.0	44	440	1	0	0	0	437
1989	E. Rur Cross - 283 axles	1.0	3.0	30	230	0	1	0	0	242
1989	E. Rur Cross - >3 axles	1.0	3.0	30	50	0	0	0	1	42
1989	E. River Crossings - vans	1.0	3.0	52	530	1	0	0	0	524

App-B-3

Lower Manhattan
BOE
BOE
BOE

| 1989 E. Rvr Cross - 23 axles | 1.0 |
| :--- | :--- | :--- |
| 1989 E. River Crossings - vans | 1.0 |
| 1989 E. Rvr Cross - 2 axles | 1.0 |
| 1989 E. Rvr Cross $->3$ axles | 1.0 |

1.0	3.0	30	80	0	0	0	1	72
.0	3.0	30	60	1	0	0	0	58
1.0	3.0	30	30	0	1	0	0	12
1.0	3.0	30	30	0	0	0	1	8

OT Dataset AM Time Period

| Verrazano Bridge | 1991 T8TA toll counts WB | 1.0 | 3.0 | 50 | 50 | 0 | 1 | 0 | 0 | 507 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Verrazano Bridge | 1991 TBTA toll counts WB | 1.0 | 3.0 | 50 | 50 | 0 | 0 | 0 | 1 | 446 |
| JFK - Linden Ave | 1985 JFK Air Cargo Study | 1.0 | 3.0 | 0 | 30 | 1 | 0 | 0 | 0 | 86 |
| JFK - Linden Ave | 1985 JFK Air Cargo Study | 1.0 | 3.0 | 0 | 30 | 0 | 1 | 0 | 1 | 173 |
| All Destinations | 1985 JF Air Cargo Study | 1.0 | 3.0 | 0 | 30 | 1 | 0 | 0 | 0 | 92 |
| All Destinations | 1985 JFK Air Cargo Study | 1.0 | 3.0 | 0 | 30 | 0 | 1 | 0 | 1 | 91 |

OT Dataset, Midday Time Period

Verrazano aridge Verrazano Bridge JFK - Linden Ave JFK - Linden Ave All Destinations All Destinations

1991 TBTA toll counts WB
1991 TBTA toll counts UB
1985 JFK Air Cargo Study
1985 JFK Air Cargo Study
1985 JFK Air Cargo Study
1985 JFX Air Cargo Study

1.0	3.0	50	50	0	1	0	0	690
1.0	3.0	50	50	0	0	0	1	607
1.0	3.0	0	30	1	0	0	0	132
1.0	3.0	0	30	0	1	0	1	261
1.0	3.0	0	30	1	0	0	0	134
1.0	3.0	0	30	0	1	0	1	261

OT Dataset PM Time Period

Verrazano Bridge	1991 tbia toll counts	1.0	3.0	50	50	0	1	0	0	1066
Verrazano Bridge	1991 T8TA toll counts ws	1.0	3.0	50	50	0	0	0	1	937
JFK - Linden Ave	1985 JFK Air Cargo study	1.0	3.0	0	30	1	0	0	0	126
JFK - Linden Ave	1985 JFK Air Cargo Study	1.0	3.0	0	30	0	1	0	1	92
All Destinations	1985 JfX Air Cargo study	1.0	3.0	-	30	1	0	0	0	98
All Destinations	1985 JFK Air Cargo Study	1.0	3.0		30	0		0	,	108

LV Dataset, AM Time Period

BGE - W of Willbr	S-1 1 gow	Cls Cnts - vans	1.0	3.0	370	370	1	0	0	0	1265
BOE - N of Wiltbr	S-1 1 cow	Cls Cnts - 2axte	1.0	3.0	60	60	0	1	0	0	211
sog - N of Willbr	s-1 2 gow	Cls Cnts - >=2axie	1.0	3.0	190	190	0	1	0	1	843
BOE - W of Willbr	S-1 Gow	Cls Cnts - vans	1.0	3.0	280	280	1	0	0	0	949
80E - n of Willis	S-1 6 com	Cls Cnts - 2axle	1.0	3.0	160	160	0	1	0	0	527
BOE - N of Willbr	S-1 1 Gow	Cls Cnts - >e2axle	1.0	3.0	160	160	0	1	0	1	1054
Bklyn Batt Tun - SED	91 TBTA	urv/May Toll - vens	1.0	3.0	30	30	1	0	0	0	48
Bklyn Batt Tun - SED	91 tBta	Surv/May Toll - 283axte	1.0	3.0	30	30	0	1	0	0	66
Bklym Batt iun - SBD	91 TBTA S	Surv/May Toll - >3axle	1.0	3.0	30	30	0	0	0	1	3
Bklym batt Tun - MBD	91 tBta	Surv/May Toll - vans	1.0	3.0	30	30	1	0	0	0	295
Bklym Batt iun - MED	91 tbta	Surv/May Toll - 223axie	1.0	3.0	30	30	0	1	0	0	406
Bklym Batt Tun - MBD	91 tbta	Surv/May Toll - >3axle	1.0	3.0	30	30	0	0	0	1	19
Gowanus G-3	Gowanus	ound count - vans	1.0	3.0	90	90	1	0	0	0	865
Gowarus $\mathrm{G}-3$	Got	and count-2axle	1.0	3.0	50	50	0	1	0	0	481
us 6.3	Gow	致dcount - >x2axl	1.0	3.0	50	50	0	1		1	962
aus 6-4	Got	count - vans	1.0	3.0	120	120	1	0	0	0	1210
nus G-4	Go	2axl	1.0	3.0	30	30	0	1	0	0	202
us G-4	Gow	andcount - >x2axie	1.0	3.0	60	60	0	1	-	1	807
G-8	Gow	d count - vans	1.0	3.0	40	40	1	0	0	0	440
Gowarus G-8	Gower	und count - 2ax	1.0	3.0	50	50	0	1		0	529
Gowanus G-8	Gowan	groundcount - > 2 2ax	1.0	3.0	40	40	0	1	0	1	969
Gowanus G-9/G-18	Gowan		1.0	3.0	140	140	1	0	0	0	1410
Gowamus G-9/G-18	Gowan	ground count - 2axle	1.0	3.0	30	30	0	1	0	0	157
Gowanus 6-9/6-18	Gowanus 9	groundcount - >2axale	1.0	3.0	60	60	,	1	0	1	784
Gowarus S of Shrpkwy	Gowanus F	Fght Report - July 1992	1.0	3.0	110	110	1	0	0	0	1133
Gowanus S of Shrpkyy	Gowanus F	Fght Report - July 1992	1.0	3.0	40	40	0	,	0	0	426
Gowanus 5 of Shrploy		Fght Report - July 1992	1.0	3.0	40	40	0	1	0	1	849
Gowanus S of ShrPkuy	Gowanus F	Fght Report - July 1992	1.0	3.0	30	30	1	0	0	0	152

-V	31	933390
LV	32	933390
IV	33	933445
v	34	933445
-V	36	933445
LV	37	51600
LV	38	51600
v	39	51600
v	40	-51600
-v	41	. 51600
LV	42	-51600
LV	43	51670
\checkmark	44	51670
V	45	51670
LV	46	-51670
LV	47	-51670
. V	48	-51670
. V	49	14850
-V	50	14850
LV	51	14850
LV	52	-14850
.v	53	-14850
-V	54	-14850
LV	55	-912540
LV	56	-912540
-V	57	-912540
.V	58	912540
:V	59	912540
LV	60	912540
LV	61	52150
LV	62	52150
LV	63	52150
LV	64	-52150
LV	65	-52150
LV	66	-52150
cv	67	52380
LV	68	52380
LV	69	52380
LV	70	. 52380
LV	71	-52380
LV	72	-52380
LV	73	12220
LV	74	12220
Lv	75	12220
LV	76	-12220
LV	77	-12220
LV	78	-12220
LV	79	14920
LV	80	-14920
LV	81	14960
LV	82	-14960
LV	83	14981
LV	84	-14981
LV	95	-57310
LV	98	51960
LV	99	.51960
LV	100	-58690
LV	101	58690
LV	102	12110
LV	103	12110
LV	105	12110
LV	106	-12110
LV	107	- 12110
LV	109	- 12110
LV	110	12120
LV	111	12120
LV	113	12120
LV	114	-12120
LV	115	- 12120

Gowanus S of ShrPkwy
Gowanus S of ShrPkwy
Verrazano Br - YBD Verrazano Br - WBD
Verrazano Br - WBD Verrazano Br - WBD
verrazano Br - WBD 4th Avenue - Loc 4 4th Averue - Loc 4 4th Avenue - Loc 4 4th Averue - Loc 3 4 th Avenue - Loc 3 4 th Averue - Loc 3 5th Avenue - Loc 2b 5th Averue - Loc 2b
5th Avenue - Loc 2b 5th Avenue - Loc 2a
5th Avenue - Loc 2a 5th Avenue - Loc 2a
Ft. Ham. Pkwy - 1 b Ft. Hen. Pkwy - 1b
Ft. Ham. Pkwy - 1b
Ft. Ham. Pkwy - 1a
Ft. Hem. Pkwy - 1a
fe. Hom. Pkwy - 1a
Ocean Pkwy - Loc 4
Ocean Pkwy - Loc 4
Ocean Pkwy - Loc 4
Ocean Pkwy - Loc 3
Ocean Pkwy - Loc 3 Coney Averuse - Loc 4 Coney Avenue - Loc 4
Coney Avenue - Loc 3
Coney Avenue - Loc 3
Coney Avenue - Loc 3 gowanus ground count - >x2axle
Oceen Avenue - Loc 4 Gowanus ground count - vans
Ocean Avenue - Loc 4 Gowamus ground count - 2axle
Ocean Aveme - Loc 4 Gowarus ground count - >2axle
Ocean Avenue - Loc 3 Gowanus ground count - vans
Ocean Avenue - Loc 3
Ocean Avenue - Loc 3 Gowarus ground count - >=2axle
Flatbush Ave - Loc 4 Gowamus ground eount - vans
Flatbush Ave - Loc 4 Gowarus ground count - 2axle
Flatbush Ave - Loc 4 Gowanus ground count - >eZaxle
Flatbush ave - Loc 3 Gowamus ground count - vans
Flatbush Ave - Loc 3 Gowanus ground count - 2axle
Flatbush Ave - Loc 3
Linden Ave a Caton
Linden Ave a Caton
Linden a Kings Hay
Linden a Kings Hwy
Linden a Perma Ave
Linden a Pema Ave
Union st.
stillmell ave.
stillwell Ave.
Crospey Ave.
Crospey Ave.
Flatbush Ave - 1
Flatbush Ave - 2

Gowanus ground count - sx2axle
S1 Data with multipliers
S1 Data with multipliers
51 Data with miltipliers
51 Data with multipliers 51 Data with multipliers S1 Data with multipliers
WYCDOT Bridge Report - 1988 cts
wycoor bridge Report - 1988 Cts
HYCDOT Bridge Report - 1988 Cts
MYCDOT Bridge Repori - 1988 cts
Brooklyn Truck Roure study
Brooklyn Truck Route study
Brookly Truck Route Study
Brooklyn Truck Route Study
Brookly Truck Route study
Brooktyn Truck Route Study
Brooklyn Truck Route study

000
453
1012
434
508
447
480
64
70
64
45
48
43
8
33
13
13
13
150
96
139
148
27
54
315
102
173
55
10
10
76
12
21
279
83

-d	117	-12120
LV	118	12240
v	119	- 12240
\checkmark	120	14480
1	121	14480
LV	123	14480
LV	124	-14480
\checkmark	125	-14480
\checkmark	127	-14480
-	128	14510
LV	129	14510
V	131	14510
v	132	- 14510
v	133	-14510
LV	135	-14510
LV	136	14550
v	137	14550
v	139	14550
- V	140	-14550
LV	149	- 14550
'V	143	-14550
v	144	58910
v	145	-58910
LV	146	58960
LV	147	-58960
,	148	56720
v	149	56720
v	151	56720
LV	152	-56720
v	153	-56720
v	155	-56720
v	156	56510
LV	157	-56510
LV	158	56130
v	159	-56130
v	160	11203
-V	161	11203
LV	162	11203
'V	163	11206
\checkmark	164	11206
v	165	11206
เV	166	11233
LV	167	11233
v	168	11233
v	169	11236
-V	170	11236
LV	171	112

Brooklym Iruck Route Study	1.0	3.0	30	30	0	0	0	1	45
Brookly Truck Route Study	1.0	3.0	30	30	0	1	0	1	206
Brookly Pruck Route Study	1.0	3.0	30	30	0	1	0	1	206
Brookly Iruck Route Study	1.0	3.0	30	30	1	0	0	0	238
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	0	190
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	54
Brooklym Truck Route Study	1.0	3.0	30	30	1	0	0	0	238
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	0	190
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	54
Brooklyn Truck Route Study	1.0	3.0	40	40	1	0	0	0	396
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	0	318
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	90
Brooklyn Iruck Route study	1.0	3.0	40	40	1	0	0	0	396
Brooklyn iruck Route Study	1.0	3.0	30	30	0	1	0	0	318
Brookly Truck Route Study	1.0	3.0	30	30	0	0	0	1	90
Brooklyn Truck Route Study	1.0	3.0	60	60	1	0	0	0	568
Brookly Truck Route Study	1.0	3.0	40	40	0		0	0	455
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	129
Brooklyn Truck Route Study	1.0	3.0	60	60	1	0	0	0	568
Brookly Truck Route Study	1.0	3.0	40	40	0	1	0	0	455
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	129
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	1	65
Brookly Truck Route Study	1.0	3.0	30	30	0	1	0	1	65
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	1	65
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	1	65
Brooklyn Truck Route Study	1.0	3.0	40	40	1	0	0	0	375
Brooklym Iruck Route Study	1.0	3.0	30	30	0	1	0	0	356
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	52
Brooklyn Truck Route Study	1.0	3.0	40	40	1	0	0	0	375
Brooklyn Iruck Route Study	1.0	3.0	30	30	0	1	0	0	356
Brooklyn Truck Route Study	1.0	3.0	30	30	0	0	0	1	52
Brooklyn Truck Route Study	1.0	3.0	60	60	0	1	0	1	611
Brooklyn Truck Route Study	1.0	3.0	60	60	0	1	0	1	611
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	1	299
Brooklyn Truck Route Study	1.0	3.0	30	30	0	1	0	1	299
1988 WYCDOT 2 HYCDCP X's v\&p	1.0	3.0	600	600	1	0	0	0	3111
1988 NYCDOT \& NYCDCP \%'s sut	1.0	3.0	300	300	0	1	0	0	1536
1988 WYCDOT 2 NYCDCP ${ }^{\text {d's comb }}$	1.0	3.0	90	90	0	0	0	1	440
91 TBTA Survey - vanskpickups	1.0	3.0	250	250	1	0	0	0	2518
91 TBTA Survey - SU Trucks	1.0	3.0	100	100	0	1	0	0	1030
91 TBTA Survey - Comb. Trucks	1.0	3.0	30	30	0	0	0		291
1988 NYCDOT \& NYCDCP \%'s vep	1.0	3.0	350	350	1	0	0	0	1743
1988 NYCDOT 2 HYCDCP \%'s sut	1.0	3.0	170	170	0	1	0	0	860
1988 NYCDOT \& NYCDCP ${ }^{\text {d's conb }}$	1.0	3.0	50	50	0	0	0	1	247
91 TBTA Survey - vans\&pickups	1.0	3.0	250	250	1	0	0	0	2513
91 TBTA Survey - SU Trucks	1.0	3.0	140	140	0	1	0	0	1367
91 TBTA Survey - Comb. Trucks	1.0	3.0	30	30	0	0	0	1	191

LV Dataset, Midday Time Period

LV	1	933683
v	2	933683
v	3	933683
LV	4	-933603
LV	5	-933683
- V	6	-933683
V	7	9837
v	8	9837
LV	10	9837
LV	11	9830
. V	12	9830
. V	14	9830
LV	15	-11090
LV	16	- 11090
. $\cdot \mathbf{V}$	17	-11090
. V	18	11090
v	19	11090
LV	20	11090

LV 20

BOE - N of WillBr
BOE - N of Willibr
boE - W of Willbr
BOE - M of Willbr
BOE - N of Willbr
BOE - N of Willbr Bklyn Batt Tun - NBD
Gowarus G-3
Gowanus G .3
Gowarus $\mathrm{G}-3$
Gowanus $\mathrm{G}-4$
Gowarus G-4
Gowanus G-4
(91 TBTA Surv/May Toll - vans Bklyn Batt Tun - SBD 91 TBTA Surv/May Toll - 223axle Bklyn Batt Tun - SBD 91 TBTA Surv/May Toll - >3axle Bklyn Batt Tun - NBD 91 TBTA Surv/May Toll - vans Bkly Batt Tun - NBD 91 TBTA Surv/May Toll - 283axle

Gowanus ground count - vans
Gowanus ground count - 2 axle
Gowanus ground eount- $>=2 a x l e$ Gowanus ground count - vans
Gowanus ground count - 2axle
Gowanus ground count - >a2axle
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0	3.0	350	350	1	0	0
0	3.0	300	300	0	1	0
0	3.0	150	150	0	1	0
0	3.0	400	400	1	0	0
0	3.0	100	100	0	1	0
0	3.0	150	150	0	1	0
0	3.0	30	30	1	0	0
0	3.0	30	30	0	1	0
0	3.0	30	30	0	0	0
0	3.0	30	30	1	0	0
0	3.0	30	30	0	1	0
0	3.0	30	30	0	0	0
0	3.0	50	50	1	0	0
0	3.0	30	30	0	1	0
0	3.0	30	30	0	1	0
0	3.0	50	50	1	0	0
0	3.0	50	50	0	1	0
0	3.0	30	30	0	1	0

Gowarus 0.8	ground count	1.0	3.0	80	80	1	0	0	0	86
Gowarus G-8	Gowans ground count - 2axle	1.0	3.0	30	30	0	1	0	0	316
Gowancs $6-8$	Gowanus ground count - > 2 2axle	1.0	3.0	40	40	0	1	0	1	737
Gowarus 6-9/6-18	Gowanus ground count - va	1.0	3.0	100	100	1	0	0	0	1046
Gowarus G-9/G-18	Gowanus ground count - 2axie	1.0	3.0	70	70	0	1	0	0	697
Gowarus G-9/6-18	Gowarus ground count - >x2axle	1.0	3.0	50	50	0	1	0	1	1220
Gowanus S of Shrpl	Gowanus Fght Report - July 1992	1.0	3.0	70	70	9	0	0	0	693
Gowams S of Shrpkwy	Gowanus fght Report - July 1992	1.0	3.0	80	80	0	1	0	0	759
Gowamus S of 5hrpkw	Gowanus Fght Report - July 1992	1.0	3.0	110	110	0	1	0	1	1895
Gowarus S of Shrpkwy	Gowanus Fght Report - July 1992	1.0	3.0	60	60	1	0	0	0	646
Gowamus 5 of Shrpkwy	Gowamus fght Report - July 1992	1.0	3.0	60	60	0	1	0	0	575
Gowanus S of ShrPkwy	Gowarus fght Report - July 1992	1.0	3.0	90	90	0	1	0	1	1476
Verrazano Br - MBD	91 Toll Datat Gowclass - vans	1.0	3.0	300	300	1	0	0	0	1485
no Br - HBD	91 Toll data - 283axle	1.0	3.0	110	110	0	1	0	0	692
Verrazano Br - WBO	91 Toll Data - >3axle	1.0	3.0	120	120	0	0	0	1	608
4 th Avenue - Loc 4	cowanus ground coun	1.0	3.0	30	30	1	0	0	0	282
4 th Avenue - Loc 6	gownus ground count - 2axte	1.0	3.0	30	30	0	1	0	0	110
4 th Averue - Loc 4	Gowanus ground count - $>=2 \mathrm{ax}$ le	1.0	3.0	30	30	0	1	0	1	117
4th Avenue - Loc 3	Gowanus ground count - vans	1.0	3.0	30	30	1	0	0	0	344
4 th Averue - Loc 3	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	130
4th Averue - Loc 3	Gowarus ground count - > 2axie	1.0	3.0	30	30	0	1	0	1	179
5th Avenue - Loc 2b	Gowams ground count - van	1.0	3.0	30	30	1	0	0	0	165
5 th Averue - Loc 2b	Gowanus ground count - Zaxle	1.0	3.0	30	30	0	1	0	0	82
5 th Averuc - Loc 2b	Gowanus ground count - > 2 2axle	1.0	3.0	30	30	0	1	0	1	95
5th Avenue - Loc 2a	cowanus ground count - vans	1.0	3.0	30	30	1	0	0	0	82
5 th Avenue - Loc 2a	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	17
5th Avenue - Loc 2a	Gowanus ground count - >x2axte	1.0	3.0	30	30	0	1	0	1	39
Ft. Ham. Pkwy - 1b	Gowanus ground count - vin	1.0	3.0	30	30	1	0	0	0	93
Ft. Hear. Pkwy - ib	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	47
ft. Hen. Pkwy - 1b	Gowanus ground count - $>=2 \mathrm{ax}$	1.0	3.0	30	30	0		0	1	68
ft. Hen. Pkwy - 1a	Gowarus ground count - van	1.0	3.0	30	30	1	0	0		260
ft. Has. Pkwy - 1a	Gowamus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	94
Ft. Ham. Pkuy - 1a	gowanus ground count - >e2axle	1.0	3.0	30	30	0	1	0	1	170
Ocean Pkuy - Loc 4	Gowanus ground count - van	1.0	3.0	30	30	1	0	0	0	57
Ocean Pkwy - Loc 4	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	17
Ocean Pxuy Lec 6	Gowanus ground count - > 2 axile	1.0	3.0	30	30	0	1	-	,	23
Ocean Pkmy - Loc 3	Gowanus ground count - vars	1.0	3.0	30	30	,	0	0	0	155
Ocean Pkwy - Loc 3	Govanus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	49
Ocean Pkwy - Lac 3	cowanus ground count - > 2 2axle	1.0	3.0	30	30	0		0		56
Coney Averue - Loc 4	Gowanus ground count - vans	1.0	3.0	40	40		0	0	0	383
Coney avenue - Loc 4	Gowanus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	89
Coney avenue - Loc 4	Gowanus ground count - >=2axle	1.0	3.0	30	30	0	1	0	1	118
Coney avenue - Loc 3	gowanus ground count - vans	1.0	3.0	40	40		0	0	0	401
Coney averue - Loc	Gowanus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	180
Coney Averue - Loc	Gowanus ground count - >e2axt	1.0	3.0	30	30	0	1	0	1	228
Ocean Averue - Loc	Gowanus ground count - va	1.0	3.0	30	30	1	0	0	0	200
Oceen Avenue - Loc	cowanus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	111
Ocean Averue Loc	Gowarus ground count - > 2axle	1.0	3.0	30	30	0	1	0	1	127
Ocean Avenue - Loc	Gowamus ground count - vans	1.0	3.0	30	30		,	0	0	44
Ocean Avenue - Loc	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	74
Oceen Averue - Loc	Gowanus ground count - >=2axle	1.0	3.0	30	30	0	1	0	1	129
Flatbush Ave - Loc	Gowanus ground count - vans	1.0	3.0	30	30	,	0	0	0	201
Flatbush Ave - Loc	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	96
Flatbush Ave - Loc	Gowanus ground count - $>22 \mathrm{axle}$	1.0	3.0	30	30	0	1	0	1	110
Flatbush Ave - Loc	cowamus ground count - vans	1.0	3.0	30	30	1	0	0	0	104
Flatbush Ave - Loc 3	gowanus ground count - 2axie	1.0	3.0	30	30	0		0	0	22
Flatbush ave - Loc 3	Gowamus ground count - >x2axle	1.0	3.0	30	30	0	1	0	1	47
Linden Ave a Caton	s1 Data with multipliers	1.0	3.0	30	30	0	1	0	1	119
Linden Ave a Caton	St Data with multipliers	1.0	3.0	30	30	0	1	0	1	119
Linden a kings huy	s1 Data with multipliers	1.0	3.0	30	30	0	1	0	1	219
Linden a kings Mmy	S1 Data with multipliers	1.0	3.0	30	30		1	0	1	219
Linden a Pema Ave	Si Data with multipliers	1.0	3.0	30	30	0	1	0	1	172
Linden a Pema ave	S1 Data with mutipliers	1.0	3.0	30	30	0	1	0	,	172
Union st.	MYCDOT Bridge Report - 1988 Cts	1.0	3.0	30	30		1	0	1	341
Stillwell Ave.	WYCDOT Bridge Report - 1988 Cts	1.0	3.0	30	30	0	1	0	,	265
Stillwell Ave.	NYCDOT Bridge Report - 1988 cts	1.0	3.0	30	30	0	1	0	1	246
Crospey Ave.	NYCDOT Bridge Report - 1988 Cts	1.0	3.0	60	60	0	1	0	1	617
Crospey Ave.	MYCDOT Bridge Report - 1988 Cts	1.0	3.0	60	60	0	1	0	1	561
Flatoush Ave - 1	Brooklyn Truck Route Study	1.0	3.0	140	140	1	0	0	0	1418

v	103	12110
LV	105	12110
LV	106	-12110
.V	107	-12110
.V	109	-12110
-v	110	12120
LV	111	12120
'V	113	12120
. V	114	- 12120
V	115	-12120
LV	117	- 12120
LV	118	12240
.V	119	-12240
.V	120	14480
-V	121	14480
LV	123	14480
IV	124	-14480
.V	125	-14480
.V	127	-14480
LV	128	14510
LV	129	14510
.V	131	14510
.V	132	-14510
-V	133	-14510
LV	135	-16510
6V	136	14550
LV	137	14550
:V	139	14550
LV	140	-14550
LV	141	-14550
LV	143	-14550
iv	144	58910
iv	145	-58910
LV	146	58960
LV	147	-58960
LV	148	56720
LV	149	56720
LV	151	56720
LV	152	-56720
LV	153	-56720
LV	155	-56720
LV	156	56510
LV	157	-56510
LV	158	56130
LV	159	-56130
LV	160	11203
LV	161	11203
LV	162	11203
LV	163	11206
LV	164	11206
LV	165	11206
LV	166	11233
LV	167	11233
LV	168	11233
LV	169	11236
LV	170	11236
LV	171	11236

Flatbush Ave - 1 Fiatbush ave - 2 flatbush ave - 3 Flatbush Ave - 3 Atlantic Ave - 1 Attantic Ave - 1 Atlantic Ave - 2 Atlantic Ave - 3 Flatlands Ave - 1
Flatlands Ave - 1
Flatlands Ave - 2
Flatlands Ave - 2
Myrtle Ave
Myrtle Ave
Myrtle Ave
Myrtle ave
Hyrtle Ave
Myrtle ave
Flushing Ave
Flushing Ave
Metropolitan Ave
Metropolitan Ave
Manhattan Bridge
Manhattan Bridge
Manhattan Bridge
Manhattan Bridge
Manhattan Bridge
Manhattan Bridge
Williamsturg Bridge
Williemsburg Bridge
Williamsburg Bridge
Hilliansburg Bridge
Williansburg Bridge
Williamsburg Bridge 91 TBTA Survey - Conb. Trucks

Brooklyn Truck Route Study Brookly Truck Route Study Brookly Iruck Route study Brooklym Truck Route study Brooklyn Truck Route study Brookly Truck Route Study
Brooklyn Truck Route Study Brookly Iruck Route Study Brookly Truck Route Study Brookly Iruck Route Study Brooklyn Truck Route Study Brooklyn Truck Roure Study Brookly Truck Route study Brookly Truck Route study Brookly Truck Route Stuoy Brookly Truck Route Study Brooklyn Truck Route study Brooklym Truck Roure study Brooklyn Truck Route Study Brooklyn Iruck Route Study Brooklyn Truck Route study Brooklyn Truck Route Study Brooklyn Truck Route Study
Brooklyn Truck Route Study Brooklyn Truck Route Study Brooklyn Truck Route Study Brooklyn Truck Route Study Brooklyn Iruck Route Stwdy Srookly Truck Route Study Brooklyn Iruck Route Study srooklyn Truck Route Study Brooklyn Iruck Route Study Brookly Truck Route study Brooklyn Truck Route Study Brooklyn Truck Route study 1988 NYCDOT \& NYCDCP X's v\&p 1988 NYCDOT \& NYCDCP \%'s sut 1988 NYCDOT $\&$ WYCDCP $\%$'s conb 91 TBTA Survey - vans\&pickups 91 TBTA Survey - su Trucks 91 TBTA Survey - Comb. Trucks 1988 WYCDOT $\&$ HYCDCP X's vep 1988 NYCDOT 2 MYCDCP \%'s sut 1988 NYCDOT $\&$ WYCDCP X's cont 91 TBTA Survey - vanslipickups 91 TBTA Survey - SU Trucks 91 tBTA Survey - Conb. Irucks

LV Dataset, PM Time Period

BOE - N of Willbr	S-1 Gow Cls Cnts	1.0	3.0	320	320		0			1096
BOE - N of Willbr	S-1 2 Gow Cls Cnts - 2axle	1.0	3.0	210	210	0	1	0	0	731
BOE - N of Willbr	S-1 \& Gow Cls Cnts - >x2axl	1.0	3.0	160	160	0	1	0	1	1279
BoE - W of Willbr	S-1\& Gow Cls Cnts - vans	1.0	3.0	430	430	1	0	0	0	1462
BOE - N of Hillir	S-1 $\frac{1}{\text { Gow Cls Cnts - 2axle }}$	1.0	3.0	110	110	0	1	0	0	365
BOE - N of Willbr	S-1 2 Gow Cls Cnts - >22axie	1.0	3.0	160	160	0	1	0	1	13
klyn Bart Tun - SBD	91 TBTA Surv/May roll - vans	1.0	3.0	30	30	1	0	0	0	23

Bkly Batt Tin - SBD	91	1.0	3.0	30	30				0	324
Bkly Batt Tun - SBD	91 TBTA Surv/May Toll - >3ax	1.0	3.0	30	30	0	0	0	1	15
Bklym Batt Tun - M8D	91 tBTA Surv/May Toll - vans	1.0	3.0	30	30	1	0	0	0	52
Bktym Batt Tun - NED	91 tBya Surv/May roll - 283axt	1.0	3.0	30	30	0	1	0	0	209
Bktyn Batt Tun - NBo	91 TBTA Surv/May ioll - >3axle	1.0	3.0	30	30	0	0	0	1	10
Gowarus G-3	gowanus ground count - vans	1.0	3.0	90	90	1	0	0	0	949
Gowarus 6.3	Gowanus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	237
Gowarus 6.3	Gowanus ground count - >e2axle	1.0	3.0	40	40	0	1	0	1	593
gowames G-4	Gowanus ground count - vans	1.0	3.0	60	60	1	0	0	0	623
Gowarns G.4	Gowanus ground count - Zaxle	1.0	3.0	40	40	0	1	0	0	416
yanus 6-4	Gowams ground count - > $=2 \mathrm{axl}$	1.0	3.6	30	30	0	1	0	1	728
Gowarns 6-8	Gowarus ground count - vens	1.0	3.0	120	120	1	0	0	0	1181
max 6 6-8	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	338
Gowerns G-8	Gowanus ground count - >e2axle	1.0	3.0	50	50	0	1	0	1	846
Gowarus G-9/G-18	owamus ground count - var	1.0	3.0	90	90	1	0	0	0	878
Gowame G-9/G-18	Gowams ground count - 2axle	1.0	3.0	50	50	0	1	0	0	527
Gowarus G-9/6-18	Gowams ground count - > 2 2axle	1.0	3.0	40	40	0	1	0	1	878
Gowanus S of ShrPkwy	Gowanus Fght Report - July 1992	1.0	3.0	60	60	1	0	0	0	629
Gowarus S of Shrpkwy	Gowanus Fght Report - July 1992	1.0	3.0	50	50	0	1	0	0	530
Gowarus S of Shrpkwy	Gowanus Fght Report - July 1992	1.0	3.0	50	50	0	1	0	1	1027
Gowarus S of Shrpkny	Gowarus Fght Report - July 1992	1.0	3.0	130	130	1	0	0	0	1267
Gowarus S of Shrpkwy	Gowanus Fght Report - July 1992	1.0	3.0	50	50	0	1	0	0	474
Gowarus S of 5hrpkwy	Gowarus Fght Report - July 1992	1.0	3.0	70	70	0	1	0	1	1126
verrazano Br - WBD	91 Toll Data $\&$ GouClass - vans	1.0	3.0	560	560	1	0	0	0	2804
Verrazano 8 - wad	91 Toll data - 283axle	1.0	3.0	160	160	0	1	0	0	1065
errazano Br - WBD	91 Toll Data - >3axle	1.0	3.0	190	190	0	0	0	1	937
4 th Averue - Loc 4	Gowanus ground count - vans	1.0	3.0	30	30	1	0	0	0	195
4 th Averue - Loc 4	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	44
4th Avenue - Loc 4	Gowanus groundeount - >ezaxle	1.0	3.0	30	30	0	1	0	1	44
4th Averue - Loc 3	Gowanus ground count - vans	1.0	3.0	40	40	1	0	0	0	417
4th Averuse - Loc 3	Gowarus ground count - Zaxle	1.0	3.0	30	30	0	1	0	0	69
4th Avenue - Loc 3	Gowarus ground count - > 2 2ax	1.0	3.0	30	30	0	1	0	1	69
5th Avenue - Loc 2b	Gowarus ground count - vans	1.0	3.0	30	30	1	0	0	0	60
5 th Avenue - Loc 2 b	Gowanss ground count - 2axle	1.0	3.0	30	30	0	1	0	0	
5 th Avenue - Loc 2b	Gowarus ground count - >e2axt	1.0	3.0	30	30	0	1	0	1	
Sth Avenise - Loc 2a	gowanus ground count - vans	1.0	3.0	30	30		0	0	0	26
Sth Avence - Loc 2a	Gowamus ground count - Zaxle	1.0	3.0	30	30	0	1	0	0	19
5th Avenue - Loc 2a	Gowamus ground count - > $>2 \mathrm{ax}$	1.0	3.0	30	30	0	1	0	1	19
ft. Hea. Pkwy - ib	Gowarus ground count - vans	1.0	3.0	30	30	1	0	0	0	34
Ft. Hem. Pkwy - 1b	Gowanus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	27
Ft. Ham. Pkwy - ib	Gowarus ground count - >e2ax	1.0	3.0	30	30	0	1	0	1	38
Ft. Hem. Pkwy - 1a	Gowamus ground	1.0	3.0	30	30		0	0	0	286
Ft. Han. Pkwy - 1a	Gowams ground count - 2axle	1.0	3.0	30	30	0	1	0	0	26
ft. Hem. Pkwy - 1a	Gowams ground count - > $=2 a x$	1.0	3.0	30	30	0	1	0	1	72
Ocean Pkuy - Loc 4	Gowarus ground count - vans	1.0	3.0	30	30	1	0	0	0	35
Ocean Plyy - Loc 4	Gowamus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	10
Ocean Plawy - Loc 4	Gowames ground count - > 2ax	1.0	3.0	30	30	0	1	0	1	1
Ocean Pkwy - Loc 3	Gowanus ground count - vans	1.0	3.0	30	30	1	0	0	0	125
Ocean Pkwy - Loc 3	Gowamus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	36
Ocean Pkwy - Loc 3	Gowarus ground count - > 2 2ax	1.0	3.0	30	30	0	1	0	1	36
Coney Avenue - Loc 4	Gowanus ground count - vana	1.0	3.0	30	30	1	0	0	0	227
Coney Averue - Loc	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	53
Coney Averue - Loc	Gowenus ground count - >x2axi	1.0	3.0	30	30	0	1	0	1	50
Coney Averue - Loc	Gowams ground count - vans	1.0	3.0	50	50	1	0	0	0	450
Coney Avenue - Loc 3	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	90
Coney Avenue - Lac	couans ground count - $>=2 \mathrm{sx}$	1.0	3.0	30	30	0	1	0	1	97
Ocean Avenue - Loc	Gowams ground count - vans	1.0	3.0	30	30	1	0	0	0	37
Ocean Avenue - Loc	Gowanus ground count - Zaxle	1.0	3.0	30	30	0	1	0	0	24
ocean Avenue - Loc	Gowamus ground count - > $=2 \mathrm{ax}$	1.0	3.0	30	30	0	1	0	1	26
Ocean Avenue - Loc	Gowanus ground count - vans	1.0	3.0	30	30	1	0	0	0	19
Ocean Avenue - Loc	Gowanus ground count - zaxie	1.0	3.0	30	30	0	1	0	0	71
Ocean Avenue - Loc	Gowarus ground count - >e2axt	1.0	3.0	30	30	0	1	0	1	71
atbush Ave - Loc	Gowanus ground count - vans	1.0	3.0	30	30	1	0	0	0	114
tbush Ave - Loc	Gowams ground count - 2axle	1.0	3.0	30	30	0	1	0	0	45
atbush Ave - Loc	Gowanus ground count - > 2 2axte	1.0	3.0	30	30	0	1	0	1	62
tbush Ave - Loc 3	Gowanus ground count - vans	9.0	3.0	30	30	1	0	0	0	121
oush Ave - Loc 3	Gowanus ground count - 2axte	1.0	3.0	30	30	0	1	0	0	28
ush Ave - Loc 3	Gowamus ground count - $>=2 \mathrm{axle}$	1.0	3.0	30	30	0	1	0	1	50
	51		3.0	30	30	0	1	0	1	127

s1 Data with multipliers Si Date with multipliers
S1 Data with multipliers
S1 Data with multipliers
S1 Dats with multipliers
WYCDOT Bridge Report - 1988
NYCDOT Bridge Report - 1988 Ct
MYCDOT 8ridge Report - 1988
WYCDOT Bridge Report - 1988
NYCDOT 8ridge Report - 1988
Brookly Iruck Route study
Brookly Iruck Route study
Brookly Truck Route study
Brookly Truck Route Study
Brookly Truck Route Study
Brookly Iruck Route study
Brookly Truck Route study
Brookly Iruck Route study
Brooklyn Truck Route study
Brookly Truck Route study
Brooklyn Iruck Route study
Brookly Iruck Route study
Brooklyn Truck Route Study
Brooklyn Truck Route Study
Brookly Truck Route study
Brookly Iruck Route Study
Brooklyn Truck Route Study
Brooklym Truck Route study
Brooklyn fruck Route Study
Brooklyn Truck Route Study
Brookly Truck Route Study
Brookly Truck Route Study
Brookly Truck Route Study
Brooklyn Iruck Route Study
Brooklyn Truck Route Study
Brooklyn Truck Route study
Brookly Truck Route Study
Brooklyn Truck Route Study
Brookly Iruck Roure Study
Brooklyn Truck Route Study
Brooklyn Truck Route Study
Brookly Truck Route Study
Brooklyn Iruck Route Study
Brookly Truck Route Study
Brookly Iruck Route study
Brookly Truck Route Study
Brookly Iruck Route Study
Brooklyn Truck Route Study
Brooklyn Truck Route Study
Brooklym Iruck Route Study
Brooklym Truck Route Study
Brooklym Truck Route Study
Brooklyn Truck Route study
1988 NYCDOT $\%$ WYCDCP X 's VEp
1988 WYCDOT \% MYCDCP \%'s sut
1988 NYCDOT 2 MYCDCP \%'s comb
91 TBTA Survey - vanskpickups
91 TBTA Survey - SU Trucks
91 TBTA Survey - Comb. Trucks
1988 NYCDOT \& HYCDCP \%'s vep
1988 NYCDOT \& NYCDCP X's sut
1988 NYCDOT 2 NYCDCP X's comb
91 TBTA Survey - venstpickups
91 TBTA Survey - SU Trucks
91 TBTA Survey. Comb. Trucks

1.0	3.0	30	30	0	1	0	1	127
1.0	3.0	30	30	0	1	0	1	234
1.0	3.0	30	30	0	1	0	1	234
1.0	3.0	30	30	0	1	0	1	186
1.0	3.0	30	30	0	1	0	1	184
1.0	3.0	40	40	0	1	0	1	397
1.0	3.0	30	30	0	1	0	1	101
1.0	3.0	30	30	0	1	0	1	118
1.0	3.0	30	30	0	1	0	1	291
1.0	3.0	30	30	0	1	0	1	221
1.0	3.0	90	90	1	0	0	0	888
1.0	3.0	50	50	0	1	0	0	516
1.0	3.0	30	30	0	0	0	1	83
1.0	3.0	90	90	1	0	0	0	888
1.0	3.0	50	50	0	1	0	0	516
1.0	3.0	30	30	0	0	0	1	83
1.0	3.0	50	50	1	0	0	0	533
1.0	3.0	30	30	0	1	0	0	310
1.0	3.0	30	30	0	0	0	1	50
1.0	3.0	50	50	1	0	0	0	533
1.0	3.0	30	30	0	1	0	0	310
1.0	3.0	30	30	0	0	0	1	50
1.0	3.0	30	30	0	1	0	1	228
1.0	3.0	30	30	0	1	0	1	228
1.0	3.0	30	30	1	0	0	0	262
1.0	3.0	30	30	0	1	0	0	211
1.0	3.0	30	30	0	0	0	1	60
1.0	3.0	30	30	1	0	0	0	262
1.0	3.0	30	30	0	1	0	0	211
1.0	3.0	30	30	0	0	0	1	60
1.0	3.0	40	40	1	0	0	0	437
1.0	3.0	30	30	0	1	0	0	350
1.0	3.0	30	30	0	0	0	1	99
1.0	3.0	40	40	1	0	0	0	437
1.0	3.0	30	30	0	1	0	0	350
1.0	3.0	30	30	0	0	0	1	99
1.0	3.0	60	60	1	0	0	0	626
1.0	3.0	40	40	0	1	0	0	502
1.0	3.0	30	30	0	0	0	1	142
1.0	3.0	60	60	1	0	0	0	626
1.0	3.0	40	40	0	1	0	0	502
1.0	3.0	30	30	0	0	0	1	142
1.0	3.0	30	30	0	1	0	1	72
1.0	3.0	30	30	0	1	0	1	72
1.0	3.0	30	30	0	1	0	1	72
1.0	3.0	30	30	0	1	0	1	72
1.0	3.0	40	40	1	0	0	0	413
1.0	3.0	40	40	0	1	0	0	393
1.0	3.0	30	30	0	0	0	1	57
1.0	3.0	40	40	1	0	0	0	413
1.0	3.0	40	40	0	1	0	0	393
1.0	3.0	30	30	0	0	0	1	57
1.0	3.0	70	70	0	1	0	1	674
1.0	3.0	70	70	0	1	0	1	674
1.0	3.0	30	30	0	1	0	1	330
1.0	3.0	30	30	0	1	0	1	330
1.0	3.0	900	900	1	0	0	0	4566
1.0	3.0	500	500	0	1	0	0	2254
1.0	3.0	140	140	0	0	0	1	646
1.0	3.0	120	120	1	0	0	0	1169
1.0	3.0	50	50	0	1	0	0	496
1.0	3.0	30	30	0	0	0	1	253
1.0	3.0	600	600	1	0	0	0	2887
1.0	3.0	300	300	0	1	0	0	1425
1.0	3.0	80	80	0	0	0	1	409
1.0	3.0	120	120	1	0	0	0	1161
1.0	3.0	50	50	0	1	0	0	516
1.0	3.0	30	30	0	0	0	1	121

breakdown of vehicle types by time of day does not deviate substantially from those that pertain to the day as a whole.

4.3.3 LV Constraints

Table 4.11 shows an excerpt from the 144 constraints pertaining to the AM period analysis. (There are 144 similar LV constraints for the midday and PM peak time periods, respectively, as can be found in Appendix B.) They break down, categorically into:

- 6 observations for the BQE that are combinations of data from the S-1 Highway Sufficiency File kept by NYSDOT and classification counts taken by the engineering consultant for the Gowanus project;
o 6 more S-1 based observations for Linden Boulevard, taken in combination with NYSDOT's default parameters for the distribution of traffic by time-of-day and vehicle class;
- 6 observations for the Brooklyn Battery Tunnel, 6 for the Williamsburg Bridge and 6 more for the Manhattan Bridge based on a combination of the NYCDCP survey data and 1991 TBTA toll plaza data;
o 60 observations based on data collected by the Gowanus project engineering consultant;
- 3 observations from the Verrazano Bridge westbound toll data;
- 5 observations based on the NYCDOT bridge report; and
- 46 observations based on the 1985-1986 Brookly Truck Route Study (see Figure 4.4).

Table 4.11: LV Dataset Excerpt - AM Time Period

	1	933683	BQE - N of Willbr	S-1 8 Gow Cls Cnts - vans	1.0	3.0	370	370	1	0	0	0	1265
	2	933683	BOE - N of Willsr	S-1 2 Gow Cis Cnts - 2axle	1.0	3.0	60	60	0	1	0	0	211
- V	3	933683	BQE - N of Willsr	S-1 $2 \mathrm{Gow} \mathrm{Cis} \mathrm{Cnts} \mathrm{-} \mathrm{>}=2 \mathrm{ax}$ le	1.0	3.0	190	190	0	1	0	1	843
. V	4	-933683	80E - N of Willar	S. 12 Gow Cls Cnts - vans	1.0	3.0	280	280	1	0	0	0	949
	5	-933683	80E - N of willar	S-1 2 Gow Cls Cnts - 2axle	1.0	3.0	160	160	0	1	0	0	527
	6	-933683	BOE - N of Hillbr	S-1 $\&$ Gow Cls Cris - > 2 2axle	1.0	3.0	160	160	0	1	0	1	1054
	7	9837	Eklyn Batt Tun - SBD	91 TBTA Surv/May Toll - vans	1.0	3.0	30	30	1	0	0	0	48
. V	8	9837	Bklyn Batt Tun - SBD	91 TBTA Surv/May Toll - 283 ax le	1.0	3.0	30	30	0	1	0	0	66
v	10	9837	Bkly Batt Tun - SBD	91 TBTA Surv/May foll - >3axle	1.0	3.0	30	30	0	0	0	1	3
1	11	9830	Bklyn Batt Tun - NBD	91 TBTA Surv/May Toll - vans	1.0	3.0	30	30	1	0	0	0	295
1	12	9830	Bklym Batt iun - MBD	91 tBTA Surv/May Toll - 283axle	1.0	3.0	30	30	0	1	0	0	406
.V	14	9830	BKlyn latt Tun. NBD	91 tata Surv/May Toll - >3axle	1.0	3.0	30	30	0	0	0	1	19
.v	15	-11090	Gowanus 6-3	Gowanus ground count - vans	1.0	3.0	90	90	1	0	0	0	865
1	16	-11090	Gowamus 6-3	Gowanus ground count - 2axte	1.0	3.0	50	50	0	1	0	0	481
1	17	-11090	Gowamis G-3	Gowanus grourdeount - > 2axle	1.0	3.0	50	50	0	1	0	1	962
.	18	11090	Gowamus G-6	Gowanus ground count - vans	1.0	3.0	120	120	1	0	0	0	1210
-v	19	11090	Gowemis 6.4	Gowarus ground count - 2axle	1.0	3.0	30	30	0	1	0	0	202
4	20	11090	Gowarus G-4	Gowarus groundcount - >=2axle	1.0	3.0	60	60	0	1	0	1	807
1	21	12320	Gowamus G-8	Gowarus ground count - vans	1.0	3.0	40	40	1	0	0	0	440
1	22	12320	Gowamis 6-8	Gowanus ground count - 2axle	1.0	3.0	50	50	0	1	0	0	529
-v	23	12320	Gowarus 6-8	Gowanus groundcount - >e2axle	1.0	3.0	40	40	0	1	0	1	969
-v	24	-12320	Gowanus 6-9/G-18	Gowanus ground count - vans	1.0	3.0	140	140	1	0	0	0	1410
1	25	- 12320	Gowanus 6-9/6-18	Gowanus ground count - 2axte	1.0	3.0	30	30	0	1	0	0	157
1	26	-12320	Gowarus 6-9/G-18	Gowanus groundeount - >e2axle	1.0	3.0	60	60	0	1	0	1	784
-	27	-933390	Gowanus S of Shrpkwy	Gowanus Fght Report - July 1992	1.0	3.0	110	110	1	0	0	0	1133
IV	28	-933390	Gowames s of Shrpkwy	Gowanus fght Report - July 1992	1.0	3.0	40	40	0	1	0	0	426
'v	29	-933390	gowarus S of Shrpkwy	Gowanus Fght Report - July 1992	1.0	3.0	40	40	0	1	0	1	849
\checkmark	30	933390	Gowanus S of Shrpkwy	Gowanus fght Report - July 1992	1.0	3.0	30	30	1	0	0	0	452
v	31	933390	Gowanus S of ShrPkwy	Gowanus fght Report - July 1992	1.0	3.0	50	50	0	1	0	0	453
LV	32	933390	gowanus S of Shrpkwy	Gowarus Fght Report - July 1992	1.0	3.0	60	60	0	1	0	1	1012
LV	33	933445	Verrazano Br - WBD	91 Toll Data \& Gowclass - vans	1.0	3.0	90	90		0	0	0	434
,	34	933445	Verrazano Br - weo	91 Toll data - 283axle	1.0	3.0	80	80	0	1	0	0	508
v	36	933445	Verrazano Br - wBD	91 Toll Data - >3axle	1.0	3.0	90	90	0	0	0	1	447

Using the first line as an example, each constraint indicates the network link number
and direction (+ or -) to which the observation pertains (933683), a description of the location (BQE - North of the Williamsburg Bridge), the source of the observation (S-1 data
from NYSDOT plus Gowanus project classification counts), the weights attached to small (1.0) and large (3.0) deviations from the observed value, the limits, below (350) and above (350) the observed value (of 1265) at which the secondary, larger weights (3.0) take effect, the truck classes to whirh the observation pertains ($0=$ no and $1=$ yes, and $\mathrm{TC} 1=$ commercial vans, $\mathrm{TC} 2=$ single unit trucks, and TC4 = trucks with four or more axles), and the observed value (1265).

Before considering how these observations are developed, it is useful to discuss the default factors developed by NYSDOT for converting AADT's into hourly volumes by vehicle class. As was shown in Chapter 3, Table 3.4, the first set of these data shows a breakdown (percentage) of total daily traffic by hour. For example, the percent of daily traffic that occurs between 6AM and 10AM is 19.5%, being the total of $2.8 \%, 5.8 \%, 5.8 \%$, and 5.1%. These data can be used to estimate total traffic in two directions within a given time period, or to establish factors that allow peak hour counts, within a given time period, to be expanded into an estimated total count for thiat time period (e.g., 3.36=.195/.058 for the 6-10 timeframe). The second set of-cata, presented in Chapter 3, Table 3.5, show breakdowns of total traffic for autos, vans, and trucks for typical urban freeways. When multiplied together, these two sets of data provide default estimates of the percent of daily vehicle trips, by vehicle class, occuring within a given time period. For example, the factor for vans during the AM peak is 0.0195 , which implies that 1.95% of all daily vehicle trips are van trips that occur during the hours between 6AM and 10AM.

Turning back to the development of LV observations, several illustrations seem appropriate. First, let us consider the observations derived from the S-1 data and Gowanus
study classification counts (LV constraints $1-8$). In this instance, the baseline data are Sufficiency File observations of AADT's for the BQE. These have been converted into volumes by truck class and direction using the classification count done just south of this location, on the BQE just north of the Gowanus (see Table 4.2). As a second example, development of observations from the TBTA toll plaza surveys (e.g., LV constraints 7-14) are straightforward, involving aggregation of the toll plaza data into time periods (e.g., from Table 4.3) and subsequent postmultiplication by the percentage distributions of vehicles by vehicle class (e.g., from Table 4.4).

From the Gowanus Corridor Project, many link volume observations can be developed. As was shown in Table 4.2, these data present peak hour volumes and vehicle classification breakdowns for several locations within Brooklyn, The truck classes employed are light, medium, and heavy, meaning 1) commercial vans with two axles and four tires, 2) two-axle-six-tire trucks and 3) atl other trucks (more than 6 tites and/or 2 axles). Table 4.2 shows four locations which volume and vehicle classification data have been collected. The first is between the Brooklyn Battery Tunnel and the BQE merge; the second is on the BQE between Rapelye Street and the merge point with the Gowanus. Each quadrant of the table shows the hourly volumes for the peak hour within each time period and the classification breakdown by vehicle types. The peak hour volumes and classification breakdowns, in combination with the time period expansion factors derived from the NYSDOT data just described above, are used to estimate total truck trips by location (direction) and truck class for each of the three time periods analyzed. Such estimates exist for three locations (two directions each) on the Gowanus expressway, and
one location each (both directions) on Fourth Avenue, Fifth Avenue, Fort Hamilton Parkway, Ocean Parkway, Coney Avenue, Ocean Avenue, and Flatbush Avenue.

From the 1988 New York City Bridge Traffic Volumes Report, prepared by the New York City Department of Transportation (NYCDOT), truck volumes by hour and direction are available for several bridges in the network (see Table 4.6). These data are used to create total truck LV observations by direction, time period. Two exceptions are that the westbound classification counts for the Williamsburg and Manhattan Bridges, which break down the truck types in greater detail, are better data than those reported by the NYCDOT bridge report, and hence should be used in place of the NYCDOT data.

The 1984 Brooklyn Truck Route Study (see Figure 4.4) provides truck volume estimates for many of the arterials within Brooklyn. These are AADTs (Average Annual Daily Traffic values) for trucks alone (e.g., 2150 trucks in both directions, between 7:00 AM and 7:00 PM, for Atlantic Avenue between Bedford Avernue and Eastern Parkway). These counts on the arterials are the most valuable, since they are the only volumes available for those facilities. In conjunction with the NYSDÖT default parameters for breakdowns of traffic volumes by time of day for urban arterials, these AADTs can be used to generate estimates of total truck volumes by time period. Moreover, through the use of NYCDOT's truck classification percentages, shown in Table 4.7, some of the truck AADTs shown in Figure 4.4 are expandable into truck flow estimates by truck class. For example, estimates along Flatbush Avenue can be developed based on the classification breakdowns from Flatbush Avenue and Bergen Street. Such estimates have been prepared for three locations
on Flatbush Avenue, three on Atlantic Avenue, two on Flatiands Avenue, and one each on Myrtle Avenue, Flushing Avenue, and Metropolitan Avenue.

4.4 Findings

Of greatest interest from the case study are the OD matrices themselves and the network flow patterns they produce. Table 4.12 presents an excerpt from the AM peak period OD matrix and Figure 4.6 shows the corresponding flow pattern for all trucks combined. The pervasiveness of truck movements throughout the borough is quite evident. Flows are heavier along the Gowanus Expressway, along north-south arterials in the middle of the network, and east-west across the northern portion of the network.

Figures $4.7,4.8$, and 4.9 present truck-class specific AM flow patterns for light, medium, and heavy trucks, respectively (light $=2$-axle, 4 -tire; medium $=$ single unit trucks; and heavy=4 or more axles). One notices immediately the heavy van flows; flows that may well be in excess of those actually occurring. This result is due to the absence of good data for the vans; the implication being that if van flows and their management is of interest, far more data need to be collected if reasonable trip matrices are to be produced.

Midday and PM Peak flow patterns for all trucks are presented in Figures 4.10 and 4.11. One notices the increased density of truck trips within the borough and the shifts in directional proportions, particularly for the Verrazano Narrows Bridge. In the AM peak, flows are more evenly balanced whereas in the PM peak, they are predominantly westbound.

Key: XCOOODDD
X: Variable
$\mathrm{C}=\mathrm{V}$: Van
$\mathrm{C}=\mathrm{M}$: Single Unit Truck

Table 4.12: OD Flow Matrix Results - Brooklyn Case Study

Figure 4.6: All Trucks, AM Period

Figure 4.7: Van Flows, AM Period

Figure 4.8: Medium Truck Flows, AM Period

Figure 4.9: Heavy Truck Flows, AM Period

Figure 4.10: All Trucks, Midday Period

Figure 4.11: All Trucks, PM Period

4.5 Insights

Many insights can be derived from these results, some of which are observations about current trends in the truck flow patterns. Others relate to instances where further data need to be collected to improve the quality of the estimates.

For example, one significant weakness in the existing data is information about flows on the Prospect Expressway. No good counts exist. This major branch off the Gowanus Expressway probably carries many trucks, but there is no way to determine precisely how many. Classification counts need to be taken.

On the Gowanus Expressway there are similar problems, in spite of the extensive data collection that has already taken place. For example, the existing data do not provide information about flows between the Verrazano Narrows Bridge and the interchange with the Shore Parkway.

Throughout the borough there is a lack of information about van flows. Since several people have suggested potential use of the parkways for commercial vans, particularly during off-peak hours, it is important to increase dramatically the amount of information regarding van trips. Important places to collect this information include locations on Third Avenue, near the Gowanus Expressway, on Atlantic Avenue, within the arterial subnetwork near the Manhattan bridge, and along Linden Boulevard.

Link volume data, in general, would be helpful at the periphery of the network (e.g., at the Brooklyn/Queens border on Atlantic Avenue, Metropolitan Avenue, Myrtle Avenue, Linden Boulevard, and Flatlands Avenue). Also valuable would be observations of flows along north-south arterials like Bedford Avenue and Utica Avenue, and on east-west
facilities like Kings Highway, Empire Boulevard, East New York Avenue, Fulton Street, Lafayette Avenue and DeKalb Avenue.

Newer OD data would be beneficial for truck trips entering and/or exiting the network at specific locations. These would include the Verrazano Narrows Bridge, the bridges and tunnels from Manhattan (eastbound), and trips going to/from the BQE. For example, the data from the 1984 Verrazano Narrows OD survey are nine years old at this juncture and may be misrepresenting current travel patterns.

CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Introduction

This project has been undertaken to create and test methods for synthesizing truck flow patterns from partial and fragmentary observations. To accomplish this goal, the project has focused on assembling all available data on truck flows in a particular urban area (New York City), developing a useable database from these separate data sets, and using the database to support a modeling effort aimed at estimating both origin-destination patterns and link flows.

Increasing levels of congestion is the motivating factor. Gone is the option of building highway capacity fast enough to keep pace with the growth in demand. In addition, what capacity we do have is in need of repair, much of it having been built in the 1960's and 1970's. Network rehabilitation is a key focal point of current planning efforts.

Air quality is another issue driving the focus on goods movement. There is an interest in reducing the freight-related emissions, particularly nitrous oxides (NO_{z}) and particulates $\left(\mathrm{PM}_{10}\right)$ from diesel trucks. Lower travel times, achieved through higher average speeds and less delay, translate into smaller quantities of fuel consumed and lower emissions, even without changing the distribution of trips among truck classes, or among modes.

To address these issues, a sense of the flow patterns is needed. It is necessary to develop OD matrices, by truck class and time period, so that diversion studies can be performed, and so that the impacts of changes to the network's characteristics can be
assessed. For example, if commercial vans are allowed to use auto-only parkways, during off-peak hours, what would be the impact? How would trips be diverted? If a major expressway is taken out of service, in whole or in part, for reconstruction and rehabilitation, what changes in truck flow patterns will result? Will certain businesses be forced to close? Will their transport costs increase dramatically? How will the overall network flow patterns be affected? Questions like these can only be answered if flow matrices are available.

Moreover, if one is to develop such matrices, from data currently available, how can the quality of the flow estimates be improved? Where should data be collected next? What types of data would be most helpful? Link classification counts? A partial OD survey? Answering these questions is a complex problem. It takes carefully designed methods and analysis tools to sift through the existing data and determine what additional data would have the greatest value.

Other problems complicate the situation. Often, the data are collected and kept by different agencies, the sampling bases are different (e.g., include/exclude vans, westbound flows only, tolled facilities only), different definitions are used for the items being collected (e.g., heavy truck, medium truck), and different time frames (e.g., different years, seasons, starting and ending times during the day). This suggests a need for an analysis tool that is tolerant of differences in the input data and robust in its estimation of flows.

5.2 The Methodology

In response to this need for better truck flow analysis tools, the purpose of this research project has been to develop a way to estimate OD trip matrices from data typically available: link volumes, classification counts, cordon counts of trucks entering and/or exiting
the study area, and partial observations of the $O D$ flows themselves. As described in Chapter 2, a method is developed that:

- makes maximum possible use of existing information;
- works with many different types of data and combinations of data;
- deals effectively and efficiently with new types of data, and new forms of information;
- generates multi-truck class OD flow matrices;
o deals with multi-time period problems; and
o accommodates network use restrictions (e.g, no trucks or no heavy trucks) and changes in those restrictions.

This new battery of software can help transportation planners estimate multi-class truck trip matrices for a given network and time period. These matrices and the associated link flows can be displayed using a Geographic Information System (GIS) platform. This contributes to rapid understanding of the results from a large, complex model.

5.3 Bronx Case Study

Chapter 3 presents an application of the methods described in Chapter 2 focusing on the Bronx, the northernmost of the five boroughs which make up New York City. The area is of particular interest for two reasons. First, the Cross-Broux Expressway is scheduled for a major rehabilitation, requiring sections of it to be closed for extended periods. This will require that traffic be diverted to other routes, and the ability to predict flows for diversion studies is of considerable importance. Second, this area has a very high concentration of truck traffic. In addition, the Hunt's Point area (south of the interchange between the Bruckner Expressway and the Sheridan Expressway -- I-895) is the location of
the major fresh meat and produce wholesale markets for New York City, generating approximately 15,000 truck trips per day [NYSDOT, 1985].

The primary purpose of the Bronx case study is to test the methods developed in Chapter 2, in order to understand how well they work, and to identify both strengths and weaknesses in the approach and its results. To accomplish this, available data on truck flows in this area is assembled to create model constraints, and then estimate truck origindestination (OD) matrices, by time-of-day and vehicle class. These resulting trip matrices are the basis for conclusions regarding the nature of truck flows in the area, and identification of "holes" in the available data -- additional pieces of information which would be most helpful in building more precise estimates of truck flows. They also provide an important set of inputs for analyses of how such flows might change under specific changes in the network (such as closing the Cross-Bronx Exprssway), although that sort of diversion study is not included here.

The analysis includes three separate time periods and three truck classes. The time periods defined are 6-10 AM (AM Peak), 10 AM - 3 PM (Midday), and 3-8 PM (PM Peak). Separate OD matrices are estimated for each time period, based on data pertaining to that time period. The analysis does not include the nighttime hours between 8 PM and 6 AM. The three truck classes used are VANS (light-duty trucks with two axles and four tires), MEDIUM (two-axle and three-axle single unit trucks), and HEAVY (trucks with four or more axles, and all tractor-trailer units).

The combination of vehicle classes and time periods means that a total of nine separate OD matrices are estimated, in three separate analyses. The three truck classes are estimated together for each time period, but the time periods are done as separate analyses.

As part of the analysis of truck flows in this case study, we want to pay special attention to separating flows of local, originating, terminating and overhead trips, defined as follows:

Local: \quad trips whose origin and destination are both internal to the study area;
Originating: trips whose origin is internal, but whose destination is outside the study area;

Terminating: trips whose origin is outside, but whose destination is inside the study area;

Overhead: trips which pass through the study area, but whose origin and destination are both outside.

The reason for this separation is that there is evidence of large overhead flows in the CrossBronx corridor, particularly of heavy trucks moving from New Jersey to New England and Long Island. One of the objectives of the case study is to provide additional insight into the nature of these movements, by time-of-day, and to differentiate the temporal patterns of the overhead movements from those of local, originating and terminating traffic.

The first major conclusion from this case study is that the methods developed in the project function as intended. Data have been taken from nine different sources, collected in different ways and at different times, and synthesized into a coherent database. This database is represented as a set of constraints for a linear programming problem which finds a set of trip tables. In this case study we have demonstrated the ability to find trip tables for three truck classes and three separate time periods during the day.

The analysis produces very plausible link flows over the network. The link flow results of the analysis are likely to be more reliable than the $O D$ tables themselves. As described in the previous section, the OD tables have a relatively small number of non-zero entries, and those entries tend to be quite large. It is likely that a better solution would
have more, and smaller, non-zero entries in the OD tables. This result is evidence of lack of data in a few crucial areas.

By looking carefully at both the OD tables and the link flows, we can identify several important "holes" in the input data. The three most important of these are:

1) the paucity of data on van movements;
2) the lack of survey data on westbound movements; and
3) the need for more complete ground counts over more of the network.

The lack of van data is particularly troubling, because of the large amount of anecdotal evidence that vans form a major element of the goods movement system within New York City. We have created OD tables for vans, but these would benefit greatly from additional data. Ideally, this additional data should include survey data on origins and destinations as well as ground counts on network links.

The truck survey data which do exist in this area are all for eastbound movements, because that is the direction in which tolls are collected at the major bridges. The result is that we have relatively little confidence in the estimates of westbound truck trips. Since surveying truck in the westbound direction is difficult, additional ground counts on the arterials as well as the expressways would help greatly.

In general, there is little link volume data in this case study. What exists is mostly on the expressways. We have almost no information on truck flows on the arterial streets.

When there is little link volume data, the results are very sensitive to the estimated link-utilization coefficients on the facilities which do have counts. This is particularly noticeable on the bridges crossing the Harlem River. The fact that we have counts on those bridges, and on virtually no streets in their vicinity, gives those bridge counts enormous leverage on estimated $O D$ volumes for local trips. Additional vehicle
classification counts, particularly on the arterial streets, would be most helpful to improve the reliability of the results.

5.4 Brooklyn Case Study

Chapter 4 describes the Brooklyn case study, the primary focus of which is on the area surrounding the Gowanus expressway. NYSDOT is in the process of rehabiliting that facility through a multi-year, multi-million dollar highway reconstruction project. The case study has three main purposes. The first is to test the methodology, and learn about its strengths and weaknesses. The second is to develop trip matrices for the network, using the methodology, and compare them with other known information about flow patterns in the area. The third is to identify holes in the data used to generate the matrices and identify ways to fill those holes.

Brooklyn was a natural choice because the Gowanus Expressway study has generated a rich set of truck-related data. Truck movements are heavy on the Gowanus, and many truck-based activites lie within the Gowanus corridor, so the engineering consultant has collected considerable traffic data, much of it focusing on truck flows.

Three truck classes are considered: 1) commercial vans, 2) single unit trucks (primarily two-axle-six-tire or three axle), and 3) trucks with four or more axles. In some instances, it is possible to distinguish between two and three-axle trucks, but neither of the two primary data sources available do so. The data collected by the engineering consultant classify trucks as either light (two-axle, four tire), medium (two-axle, six tire) or heavy (all other) and the data collected by the New York City Department of City Planning categorizes them as being either vans and pckups, single unit trucks, or combination trucks.

The scheme chosen matches that used in the Bronx case study, and helps delineate between trucks used for local deliveries as opposed to long-haul movements.

Three time periods are considered: an AM peak (from 6-10 AM), the midday (from 10AM to $3 P M$), and a PM peak (from 3-8 PM). These time periods match those commonly used to analyze traffic flows within the New York metropolitan area.

Of greatest interest from the case study are the OD matrices themselves and the network flow patterns they produce. The pervasiveness of truck movements throughout the borough is quite evident. Flows are heavier along the Gowanus Expressway, along northsouth arterials in the middle of the network, and east-west across the northern portion of the network. Midday and PM Peak flow patterns for all trucks show the increased density of truck trips within the borough and the shifts in directional proportions, particularly for the Verrazano Narrows Bridge. In the AM peak, flows are more evenly balanced whereas in the PM peak, they are predominantly westbound.

One also notices the heavy van flows; flows that may well be in excess of those actually occurring. This result is due to the absence of good data for the vans; the implication being that if van flows and their management is of interest, far more data need to be collected if reasonable trip matrices are to be produced.

One apparent weakness in the existing data is information about flows on the Prospect Expressway. This major branch off the Gowanus Expressway probably carries many trucks, but there is no way to determine precisely how many. Classification counts need to be taken.

On the Gowanus Expressway there are similar problems, in spite of the extensive data collection that has already taken place. For example, the existing data do not provide
information about flows between the Verrazano Narrows Bridge and the interchange with the Shore Parkway.

Throughout the borough there is a lack of information about van flows. Since several people have suggested potential use of the parkways for commercial vans, particularly during off-peak hours, it is important to increase dramatically the amount of information regarding van trips. Link volume data, in general, would be helpful at the periphery of the network. Also valuable would be observations of flows along north-south arterials like Bedford Avenue and Utica Avenue, and on east-west facilities like Kings Highway, Empire Boulevard, East New York Avenue, Fulton Street, Lafayette Avenue and DeKalb Avenue.

Newer OD data would be beneficial for truck trips entering and/or exiting the network at specific locations. These would include the Verrazano Narrows Bridge, the bridges and tunnels from Manhattan (eastbound), and trips going to/from the BQE. For example, the data from the 1984 Verrazano Narrows OD survey are nine years old at this juncture and may be misrepresenting current travel patterns.

REFERENCES

Bell, M.G.H. [1983]. "The Estimation of an Origin-Destination Matrix from Traffic Counts," Transportation Science, 17, pp. 198-217.

Bell, M.G.H. [1984]. "Log-linear Models for the Estimation of Origin-Destination Matrices from Traffic Counts," Ninth International Symposium on Transportation and Traffic Theory, pp. 451-469, VNU Science Press, Utrecht.

Brenninger-Gothe, M., K.O. Jornsten and J.T. Lundgren [1989]. "Estimation of OriginDestination Matrices from Traffic Counts Using Multiobjective Formulations," Transportation Research, 23B, pp. 257-269.

Carey, M., C. Hendrickson and K. Siddarthan [1981]. "A Method for Estimation of Origin/ Destination Trip Matrices," Transportation Science, 15, pp. 32-49.

Cascetta, E. [1984]. "Estimation of Trip Matrices from Traffic Counts and Survey Data: A Generalized Least Squares Estimator," Transportation Research, 18B, pp. 289-299.

Dial, R.B. [1971]. "A Probabilistic Multipath Traffic Assignment Algorithm which Obviates Path Enumeration," Transportation Research, 5, pp. 83-111.

Fisk, C.S. and B.E. Boyce [1983]. "A Note on Trip Matrix Estimation from Traffic Count Data," Transportation Research, 17B, pp. 245-250.

Maher, M.J. [1983]. "Inferences on Trip Matrices from Observations on Link Volumes: A Bayesian Statistical Approach," Transportation Research, 17B, pp. 435-447.

McNeil, S. and C. Hendrickson, [1985]. "A Regression Formulation of the Matrix Estimation Problem," Transportation Science, 19, pp. 278-292.

New York State Department of Transportation [1985]. Hunt's Point Access Study, Albany, NY.

Ogden, K.W. [1992]. Urban Goods Movement: A Guide to Policy and Planning, Ashgate, Aldershot, England.

Port Authority of New York and New Jersey [1992]. 1991 Truck Origin-Destination/ Commodity Survey, New York.

Robillard, P. [1975]. "Estimating the O-D Matrix from Observed Link Volumes," Transportation Research, 9, pp. 123-128.

Spiess, H. [1987]. "A Maximum Likelihood Model for Estimating Origin-Destination

Matrices," Transportation Research, 21B, pp. 395-412.
Turnquist, M.A. and Y. Gur [1979]. "Estimation of Trip Tables from Observed Link Volumes," Transportation Research Record 730, pp. 1-6.

Van Zuylen, J.H. and D.M. Branston [1982]. "Consistent Link Flow Estimation from Counts," Transportation Research, 16B, pp. 473-476.

Van Zuylen, J.H. and L.G. Willumsen [1980]. "The Most Likely Trip Matrix Estimated from Traffic Counts," Transportation Research, 14B, 281-293.

Willumsen, L.G. [1984]. "Estimating Time Dependent Trip Matrices from Traffic Counts," Ninth International Symposium on Transportation and Traffic Theory, pp. 397-411, VNU Science Press, Utrecht.

Wilson, A.G. [1970]. Entropy in Urban and Regional Modelling, Pion, London.

[^0]: leaeno:
 LIGHT TRUCK- INCLUDES 2 AXLES. 4 TIRES.
 MEDIUM TRUCK - INCLUDES 2 AXLES. 6 TIRES.
 heavr truck l- includes 3.4 AXIES sincle unit raucks
 HEAVY TRUCK M- WCLUDES $3.4,6.6+A \times L E S$ SEMI TRAILERS.

[^1]: LEGEND:
 LIGMT TRUCK-INCLUOES 2 AXLES. 4 TIRES.
 MEDIUM TRUCK- INCLUDES 2 AXLES. 6 TIRES.
 HEAVY TRUCK I- INCLUDES 3.4 AXLEE SMCLE UNIT TRUCKS
 HEAVY TRUCK N- MCLUOES 3,4.3.6+AXLES SEMM THAILERS.

